General Plant
Layout and Equipment selection
Principles

DP-19

Ver. 1
Date: 08 April 2021
<table>
<thead>
<tr>
<th>Revision</th>
<th>Description</th>
<th>Released By</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>Working draft</td>
<td>J de Villiers</td>
<td>25/03/2020</td>
</tr>
<tr>
<td>1</td>
<td>First release</td>
<td>J de Villiers</td>
<td>08/04/2021</td>
</tr>
</tbody>
</table>
Table of contents

DEFINITIONS ... 6

PART A –GENERAL REQUIREMENTS .. 7
 1. INTRODUCTION ... 8
 2. ‘MUST’ VERSUS ‘SHALL’ VERSUS ‘WILL’ ... 8
 3. REFERENCED STANDARDS ... 8
 3.1 STANDARDS LIST .. 8
 3.1.1 Watercare standards .. 8
 3.1.2 National and international standards .. 8
 3.1.3 Regulations ... 9
 3.1.4 Other publications .. 9
 4. MATERIAL SCHEDULES - MATERIAL SELECTION AT DESIGN .. 9
 5. DESIGN REQUIREMENT EXEMPTIONS .. 9

PART B – LAYOUT DESIGN ... 10
 1. PREMISES ACCESS CONTROL ... 11
 2. CHEMICAL MANAGEMENT AND STORAGE ... 12
 2.1 GENERAL ... 12
 2.2 TREATMENT CHEMICALS ... 12
 2.2.1 Hazardous substance classes .. 12
 2.2.2 Storage ... 12
 2.2.3 Labelling and signage .. 13
 2.2.4 Waste management ... 13
 2.2.5 Record keeping ... 13
 3 HAZARDOUS AREAS .. 13
 4 CROSS-CONNECTION CONTROL ... 14
 5 PROCESS AND POTABLE WATER IN PLANT PIPING .. 14
 6 COMMON WALL CONSTRUCTION .. 14
 7 CONFINED SPACES .. 15
 8 EQUIPMENT GENERAL POSITIONING ... 15

PART C – MECHANICAL DESIGN .. 16
 1. GUARDS ... 17
3.8 HOSE .. 31
3.9 SUBSOIL DRAINAGE .. 31
4. PIPE FITTINGS .. 32
4.1 GENERAL ... 32
4.2 STAINLESS STEEL AND MILD STEEL .. 32
4.3 POLYVINYL CHLORIDE (PVC) AND ACRYLONITRILE BUTADIENE STYRENE (ABS) .. 32
4.4 CONCRETE ... 32
4.5 VITRIFIED CLAY .. 32
5. JOINTING SELECTION ... 32
5.1 GENERAL ... 32
5.2 STEEL WELDING ... 32
5.3 HDPE .. 32
5.4 PVC .. 33
5.5 FLANGES .. 33
5.6 FLEXIBLE COUPLINGS .. 33
5.7 PRESSED COUPLINGS ... 33
6. VALVE SELECTION .. 33
7. FIXINGS AND BRACKETS .. 36
8. DOSE PUMPS ... 36
9. CORROSION CONTROL ... 37
Definitions

Treatment (plant) Water treatment plants for the treatment of raw water by mechanical or chemical processes to meet the Drinking water Standards for New Zealand, or

Wastewater treatment that receives wastewater from Wastewater transmission (ref. “Transmission”) to remove contaminants through mechanical, chemical and biological processes.

Acronyms

- CAD: Computer aided design
- kPa: Kilo Pascal
- L: Litre
- m: Metre
- m²: Metre square
- m³: Metre cubic
- mm: Millimetre
- NB: Nominal bore
- O&M: Operations and Maintenance
- PVC: Polyvinyl chloride pipe
- sec: seconds
1. **Introduction**

This document is to describe the general considerations for process plant layout and material selection in conjunction with the Health and Safety in Facility design guidelines and particular plant design requirements.

2. **‘Must’ versus ‘Shall’ versus ‘Will’**

Where the verbs must, shall and will (or its past tense forms) are used they describe a requirement for compliance with the statement in which it is used.

‘Shall’ and ‘must’ expresses a mandatory condition or action. ‘Will’ is used to prescribe a performance outcome or intent.

3. **Referenced standards**

3.1 **Standards list**

This standard must be read in conjunction with the Watercare, national and international standards listed below. Where conflict or ambiguity exists, this standard shall take precedence. Where there is conflict between referenced standards, the higher level of standard shall take precedence.

3.1.1 **Watercare standards**

DP - 11 Health and Safety in Facility Design guidelines

DP – 09 Electrical design

DP – 12 Architectural design guidelines

ME - General mechanical construction standard

MS - Material supply standard

7363 - Watercare CAD manual

AI - Data and Asset Information standard

3.1.2 **National and international standards**

NZS 1170 Structural design actions
 Part 5 Earthquake actions – New Zealand
 Part 5 Supp 1 Earthquake actions – New Zealand – Commentary

NZS 3106 Code of Practice for concrete structures for the storage of liquids

NZS4219 Seismic performance of engineering systems in buildings

AS/NZS1657 Fixed platforms, walkways, stairways and ladders. Design, construction and installation

NZS 4541 Automatic fire sprinkler systems

AS/NZS4024.1601 Design of controls, interlocks and guarding - Guards - General requirements for the design and construction of fixed and movable guards

NZS6801 Acoustics - Measurement of environmental sound
3.1.3 Regulations
Health and Safety at Work Act 2015
The Hazardous Substances and New Organisms Act 1996 (HSNO)
Health and Safety at Work (Hazardous substances) Regulation 2017
Resource Management Act 199
Building Act 2004

3.1.4 Other publications
Seismic Design of Storage Tanks 2009 (New Zealand Society for Earthquake Engineering).

4. Material schedules - material selection at design
Material selection shall be completed by the designer on the following principle:

Feasible materials shall be shortlisted based on their limitations of use to ensure reliability, future maintenance and the cost of repair is kept to a minimum. The consideration of technical advantages shall only be taken on the shortlisted materials. Function and maintainability shall take precedence.

The selected material shall be fit for purpose and submitted to Watercare for approval before commencing with detailed design.

As part of the design output, the designer shall complete the procurement schedules for the products and identify any design specific requirements over and above the minimum requirements stated by Watercare’s Material Supply standard.

5. Design requirement exemptions
The following projects are typically excluded from design work:

a) Installation or replacements of like-for-like valves, fittings and meter assemblies with componentry that are fully compliant with the Watercare Material Supply standard.
b) Repair of a system component or replacing it with a similar Watercare approved component of the same operational capacity as described in the original design.
c) Maintaining corrosion protection on facilities, unless a new corrosion protection system is proposed.

To qualify for the design exemption the works must be reviewed by a Watercare engineer with suitable qualification and experience, completed to Watercare standard design and the asset data, including as-built drawings updated to the current standard.
Part B – Layout design
1. Premises access control

a) This section shall be read with consultation on the Watercare operational policy document: “Operational Facility/Asset Access and Key/Security Card Control Procedure”. (This document is not publicly available and must be requested from Watercare).

b) Reference shall be made to the Watercare architectural guidelines in relation to design considerations for sections on site layout with considerations to crime prevention through environmental design (CPTED) principles.

c) Refer to the Health and Safety in Facility guidelines for arrangements between operational and break-out areas.

d) Wastewater (resource recovery) plants and water treatment plants for drinking water may require different consideration to access that could result in contamination or tampering or related public health incidents. Treatment facilities are often more remote and therefore may not have visibility where public alarm can be raised, or limited operator attendance due to comprehensive automation.

The following table describes access concerns control concerns and possible solutions:

<table>
<thead>
<tr>
<th>Access concern</th>
<th>Potential Impact</th>
<th>Plant type impacted</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vandalism and the wilful damage of property</td>
<td>Loss of operation</td>
<td>Water treatment</td>
<td>Security management, Monitoring</td>
</tr>
<tr>
<td></td>
<td>Water quality</td>
<td>Wastewater/Resource recovery</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aesthetics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terrorism</td>
<td>Water quality</td>
<td>Water treatment</td>
<td>Digital protection</td>
</tr>
<tr>
<td></td>
<td>Loss of operation</td>
<td></td>
<td>Minimise sensitive information within</td>
</tr>
<tr>
<td></td>
<td>Loss of supply</td>
<td></td>
<td>public realm</td>
</tr>
<tr>
<td>Theft</td>
<td>Lowered resilience</td>
<td>Water treatment</td>
<td>Security management</td>
</tr>
<tr>
<td></td>
<td>Public health</td>
<td>Wastewater/Resource recovery</td>
<td></td>
</tr>
<tr>
<td>Perimeter breach:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Gate access control</td>
<td>Public health</td>
<td>Water treatment</td>
<td>Inspection, digital monitoring</td>
</tr>
<tr>
<td>- Number of access gates and fences</td>
<td>Theft</td>
<td>Wastewater/Resource recovery</td>
<td>Minimising access points</td>
</tr>
<tr>
<td></td>
<td>Vandalism</td>
<td></td>
<td>Security control</td>
</tr>
<tr>
<td>Visitors for work</td>
<td>Public health</td>
<td>Water treatment</td>
<td>Induction and safety practices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wastewater/Resource recovery</td>
<td>Works management</td>
</tr>
<tr>
<td>Public site visits</td>
<td>Public health</td>
<td>Water treatment</td>
<td>Manage information and limiting video and</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wastewater/Resource recovery</td>
<td>photo material</td>
</tr>
<tr>
<td>Audio-visual breach / Social media:</td>
<td>Public health</td>
<td>Water treatment</td>
<td>Preventing unsolicited capture and sharing of</td>
</tr>
<tr>
<td></td>
<td>Terrorism</td>
<td>Wastewater/Resource recovery</td>
<td>video, photos, models</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and operational records</td>
</tr>
<tr>
<td>Contamination/pandemic</td>
<td>Water quality/Public</td>
<td>Water treatment</td>
<td>Perimeter security</td>
</tr>
<tr>
<td></td>
<td>health</td>
<td></td>
<td>Monitoring</td>
</tr>
</tbody>
</table>
Access concern | Potential Impact | Plant type impacted | Solutions
--- | --- | --- | ---
Environmental health | Wastewater/Resource recovery | Staff isolation and flexibility in skills
IT/control/automation system security | Public health | Water treatment Wastewater/Resource recovery | Digital protection

<table>
<thead>
<tr>
<th>Substance classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Substance of explosive nature</td>
</tr>
<tr>
<td>Class 2</td>
<td>Flammable gas</td>
</tr>
<tr>
<td>Class 3</td>
<td>Flammable liquid</td>
</tr>
<tr>
<td>Class 4</td>
<td>Flammable solid</td>
</tr>
<tr>
<td>Class 5</td>
<td>Substance with ability to oxidise (to accelerate a fire)</td>
</tr>
<tr>
<td>Class 6</td>
<td>Acute or chronic toxicity – toxic to humans</td>
</tr>
<tr>
<td>Class 8</td>
<td>Corrosiveness</td>
</tr>
<tr>
<td>Class 9</td>
<td>Eco-toxicity with or without bioaccumulation (directly or indirectly toxic to the environment)</td>
</tr>
</tbody>
</table>

2. Chemical management and storage

2.1 General

The design must produce chemical storage and handling solutions that meet the current legislative requirements under the HSNO and Health and safety at work (Hazardous substances) regulations.

2.2 Treatment chemicals

2.2.1 Hazardous substance classes

<table>
<thead>
<tr>
<th>Substance classification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Substance of explosive nature</td>
</tr>
<tr>
<td>Class 2</td>
<td>Flammable gas</td>
</tr>
<tr>
<td>Class 3</td>
<td>Flammable liquid</td>
</tr>
<tr>
<td>Class 4</td>
<td>Flammable solid</td>
</tr>
<tr>
<td>Class 5</td>
<td>Substance with ability to oxidise (to accelerate a fire)</td>
</tr>
<tr>
<td>Class 6</td>
<td>Acute or chronic toxicity – toxic to humans</td>
</tr>
<tr>
<td>Class 8</td>
<td>Corrosiveness</td>
</tr>
<tr>
<td>Class 9</td>
<td>Eco-toxicity with or without bioaccumulation (directly or indirectly toxic to the environment)</td>
</tr>
</tbody>
</table>

2.2.2 Storage

a) The design shall comply with the Health and Safety at Work (Hazardous substances) Regulations 2017.
b) Access to class 6 and 8 storage areas must be secured from access by unauthorised persons.
c) The storage area must have appropriate ventilation.
d) The storage area must be designed with appropriate spillage retention measures where tanks or pipe work may fail, or where chemicals are transferred or decanted.
e) Bund protection from rain whilst allowing air flow or retention as required for the substance (such as louvered walls to prevent rain but still facilitate air flow).
f) Incompatible substances or substances that may react dangerously must not be stored in the same area.
g) Onsite storage should be minimised to reduce hazards.
h) Larger volumes require chemicals to be stored in separate areas to public spaces as defined by the regulations.
i) The storage area must be prepared for any health-related emergency or spillage that can occur from the stored substance.
j) Above ground tanks for must be earthed and bonded to AS/NZS1020:1995 and lightning protected in accordance with AS/NZS1768:2007 as appropriate for the related classification.

k) Class 2 tanks may not be stacked above one another.

l) Class 3 tanks may not be located end-to-end unless determined by risk assessment that failure of a tank end will not impact other tanks.

2.2.3 Labelling and signage

a) Containers and storage items must be appropriate for the substance and marked accordingly
b) Containers labels and signage should be such as not to be mistaken for food or beverage i.e. do not use containers that can be mistaken for such.
c) Tanks must be marked with the design approval number.

2.2.4 Waste management

The plant layout design should consider the practicalities of waste management for the site such as:

a) Emptying of bunds:
 - Discharge to waste of naturalised substances into the environment
 - Removing content off-site for disposal
 - Bund cleaning practice
b) Storage of out-of-date substances for collection, its labelling and segregation from other parts of the plant.

2.2.5 Record keeping

a) Inventory records shall be kept up to date.
b) Hazardous substances location plan must be developed and kept up to date.
c) Safety data sheets (SDS) available and linked to inventory.
d) Compliance plans and training material must be prepared.
e) Emergency response plan (ERP) must cover:
 i. Reasonably foreseeable emergencies
 ii. Describe location of emergency equipment
 iii. Be tested within three months of a change made
 iv. Records for testing the ERP
f) Audit methods and frequency must be established.

3 Hazardous areas

a) Some areas of the plant may be classified as hazardous areas.
b) Any approved safety barriers must be designed for installation to the equipment supplier’s instructions without modification.
c) All equipment installations within these areas shall employ protection techniques appropriate for the area of classification as defined by AS/NZS 60079.
d) All equipment including cable and glands, shall be certified by a suitably certified testing authority.
e) A verification dossier shall be established in accordance with AS/NZS60079.
4 Cross-connection control

Recommended cross-connection protection at equipment is listed below:

<table>
<thead>
<tr>
<th>Description of equipment / installation</th>
<th>Recommended minimum protection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid chemical tanks</td>
<td>i) Provide air gap on dilution water supply</td>
</tr>
<tr>
<td></td>
<td>ii) Air gap to overflow and drain</td>
</tr>
<tr>
<td></td>
<td>iii) Provide day-tanks</td>
</tr>
<tr>
<td>Dry chemical feeder tanks</td>
<td>i) Provide air gap on fill supply</td>
</tr>
<tr>
<td></td>
<td>ii) Air gap to overflow and drain</td>
</tr>
<tr>
<td>Chemical feed pumps</td>
<td>i) Discharge at point of positive pressure</td>
</tr>
<tr>
<td></td>
<td>ii) Provide vacuum relief or similar anti-siphon device</td>
</tr>
<tr>
<td></td>
<td>iii) No pump priming or flushing line</td>
</tr>
<tr>
<td>Chemical carrier lines</td>
<td>Provide a reduced pressure zone (RPZ) backflow device at the supply</td>
</tr>
<tr>
<td>Chemical injection point to carrier line</td>
<td>Provide a reduced pressure zone (RPZ)</td>
</tr>
<tr>
<td>Chemical injection line in common with</td>
<td>Provide a reduced pressure zone (RPZ), eliminate cross-connection</td>
</tr>
<tr>
<td>potable water / non-potable water</td>
<td>(separate injectors for raw or filtered water)</td>
</tr>
<tr>
<td>Surface washers</td>
<td>i) Atmospheric vacuum break</td>
</tr>
<tr>
<td></td>
<td>ii) Pressure vacuum breakers assembly</td>
</tr>
<tr>
<td></td>
<td>iii) Double check valve assembly</td>
</tr>
<tr>
<td>Filter backwash</td>
<td>Provide air gap to overflow and drain</td>
</tr>
<tr>
<td>Filter-to-waste</td>
<td>Provide air gap to overflow and drain, or air gap to process stream</td>
</tr>
<tr>
<td>Membrane cleaning (in-place)</td>
<td>Physical disconnect</td>
</tr>
<tr>
<td>Sample lines to monitoring equipment</td>
<td>i) Air gap</td>
</tr>
<tr>
<td></td>
<td>ii) Atmospheric vacuum breaker</td>
</tr>
<tr>
<td>Monitoring equipment for raw and</td>
<td>i) Air gap</td>
</tr>
<tr>
<td>potable water</td>
<td>ii) Physical disconnect</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4 Process and potable water in plant piping

a) Potable water for consumption shall be completely separated from process water supplies. Due to the complexity of process water reticulation system layouts the probability of interconnection of process water piping is high.

b) Best practice is to take process water from discreet points for individual processes.

c) A reduced pressure zone (RPZ) backflow device shall be installed at these take-off points.

d) Potable water for process uses in the facility shall be from no more than two discrete points with backflow prevention at the supply point.

e) Refer to Part C, section 4 for piping layout and section 10 of this part for colour coding of pipework.

5 Common wall construction

The design shall consider cross contamination that may occur because of shared or common walls between water being treated and finished water. Either double walls with an adequate separation to allow inspection or monitoring of the wall integrity, or basins should be arranged to be well separated for prevention.
6 Confined spaces

Confined space shall be minimised. There are dangers and difficulties associated with conducting maintenance work in confined spaces. The design shall seek to limit confined spaces and place infrastructure above ground, not restrict entry or exit, and not cause engulfment or poor air quality.

7 Equipment general positioning

This section must be read with Part C.

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Positioning</th>
</tr>
</thead>
</table>
| Valves | Size >50mm positioned 600mm to 1000mm from the operator platform to the top of the operating mechanism. This includes any valve of any size that is required to be disabled for regular maintenance such as check valves.
Size <50mm positioned not higher than 1500mm from the operator platform (excludes regularly maintainable valves) |
| Pumps | Mounted on a pump skid with surface level minimum 200mm above the ground level. (excludes submersible pumps)
Horizontal clearance of minimum 1000mm
Vertical space above pumps over 25kg shall be clear and provided with access for lifting equipment. |
| Process (dosing) pumps | Mounted on a dosing skid positioned at a height of 600mm clear from pipework that could leak onto the pump and positioned to allow clearances for maintenance of pump components |
| Sensors | In reach of platforms and other access means and removable such that equipment or parts cannot be dropped into process containers |
| Meters | Clearances and pipe runs must be observed as described by the manufacturer’s installation requirements |
| Monitoring stations | Suitable for human interaction not requiring leaning over other equipment and at a height from standing surface of 1.2m to 1.5m |
| Cable runs | Short as possible, either mounted above 2000mm overhead on cable trays or in cable ducts. Ducting should not be in areas that can flood or have poor ventilation and prone to high temperatures. |
Part C – Mechanical design
1. Guards
 a) All rotating, moving or oscillating items shall be fully guarded to comply with the relevant standards and WorkSafe requirements.
 b) All drive mechanism, rotating and reciprocating parts and drive belts shall be securely shrouded to provide protection and safety for both maintenance and operating personnel.
 c) All such guards shall be of adequate material and coverage but shall also be readily removable for gaining access to the plant without the need for first removing or displacing any major item of plant.
 d) Guard design shall allow inspection ports or with expanded metal sections to allow inspection without having to remove the guards in compliance with AS/NZS4024.1601.
 e) All guards shall be designed and fitted with location pins or other suitable devices to ensure the correct positioning of the guard and provide positive fixing.
 f) Guards shall require the use of engineering tools for removal and shall not be able to be simply lifted on and off.
 g) Grilles, bars or mesh shall be provided behind inspection ports where moving equipment may be reached. Interlocks shall be provided to stop equipment if covers are opened.

2. Maximum equipment noise levels
 a) The sound pressure level (LpA) for all equipment operating at full load shall not exceed 80 dB(A) at a distance not greater than three metres radius from the equipment or sound enclosure.
 b) Noise levels shall be reduced by the enclosure, or lagging, or other special treatment of the noise source.
 c) Further noise reduction measures shall be taken to comply with any condition set to maintain the wellbeing of neighbouring properties to the facility.

3. Piping layouts
 a) Detailed design shall include:
 - Detailed layout and co-ordination, including all necessary bends and offsets.
 - Support and anchorage
 - Flexibility and dismantling
 - Expansion and contraction
 - Prevention of water hammer
 b) All pipe supports shall be seismically rated to suit the site conditions. Pipes may not be supported:
 - From existing steel structures
 - From roof girts, rafters of purlins
 - Any other structure not specifically designed for pipe static and dynamic loadings
 c) Components within the pipe systems such as meters valves and strainers shall be independently supported to facilitate dismantling and not pass stress onto the connecting pipework.
 d) Thrust support shall be designed for at equipment such as pumps and nozzles.
 e) The drawings indicate the size of pipes, their material selection and the exact arrangement.
 f) The pipe arrangement shall provide for ease of installation and future dismantling with consideration to suitable clearances around supports, saddles, slings, fixing bolts and foundation bolts.
 g) Pipes laid horizontally shall have a gradual fall towards drain or scour points as appropriate.
 h) High points shall be vented, and low points shall have suitable drainage devices appropriate to the media.
 i) Dismantling joints or dismantling options through flange and pipe arrangement (such as at bends) shall be made available:
 - Maximum 10m apart on all pipe carrying solids, sludge, sludge, etc.; and
 - At pipe material or diameter changes
• At key changes in height, structures (access areas) and change in direction
• To allow dismantling without interfering with adjacent pipe runs

j) Hangers and supports shall be designed with adequate spacing for the material type so as not to cause any spacing or stresses in the pipe and designed to NZS 4219 for seismic resilience. In general, the following considerations shall be followed for hangers or supports:
 • Installed at directional changes
 • Adjacent to connections for valves, pumps and large instrumentation
 • Manufactured from a material that is suitable to the installation environment
 • Provided with appropriate insulation to prevent galvanic reaction
 • Allow for adjustment, dismantling and replacement
 • For fire sprinklers refer to NZS 4541

k) Unless required for sealing against ventilation or liquid, all pipework passing through structures shall be run through a sleeve.

l) Pipework carrying thick media shall be provided with regular clean-out ports, typically at directional changes with suitable containment to catch run-off during the cleanout procedure.

m) Pipework running above surface carrying harmful chemicals should be double-sleeved through a carrier duct along walkways and crossings with suitable drain and inspection points.

n) Components within the pipe systems such as meters valves and strainers shall be independently supported to facilitate dismantling and not pass stress onto the connecting pipework.

o) Bends shall be long radius. Short radius elbows shall be avoided.

p) Pipe layouts shall have clean lines, neat and with true alignment and grade, without unsightly offsets, minimising cross-overs and be arranged to be accessible and readily replaceable.

q) Pipe layouts shall allow for expansion and contraction.

r) Offsets where required shall use 45° bends.

s) For process pipework up to 50mm diameter, a minimum 100mm clear space shall be provided between the pipe (or pipe flange), to adjacent structures, pipes and equipment. For larger pipe the clearance shall be x2 the external diameter.

t) Pipework shall be labelled in accordance with NZS 5807 and show the pipe content and flow direction. Labels shall be placed to ensure that the pipeline is identified as soon as possible after a person passes through a doorway, around a corner, or any other obstruction that breaks the continuous line of sight.

u) Coating colours shall be as per section 10.

4. Frames and mountings

a) All supports, holding down details and fixings for plant and equipment shall be detailed by the design, ensuring that all plant and equipment can withstand seismic loading (refer Part F) with the necessary support fixings and anchors.

b) Baseplates for motor driven plant shall hold both the driver and driven units. Sub-baseplates shall be welded to the main baseplate.

c) Fixing systems provided with base plates shall be designed for taking up adjustment for necessary alignment and to compensate for wear during normal service.

d) Baseplates shall be designed to be without distortion or deflection that could permanently damage the equipment or baseplate.

e) Eye bolts or holes shall be provided for lifting the complete assembly on the base plate in addition to lifting facilities on the individual components.

f) The underside faces of baseplates that contact foundations shall be rough machined to ASME B46.1 machinery surface.

g) Provision shall be made for all baseplates to be filled with grout during installation.
h) All baseplates, pipe supports, and other items fixed to the concrete foundation shall have straight smooth sides.

i) All holes as necessary shall be machined and not flame cut.

j) All bolt holes in steelwork shall be minimum 1.5 x hole-diameter from the nearest metal edge.

k) Flexibly mounted equipment shall be provided with suitable dampeneners with resilient surfaces to limit seismic movement.

l) Frame members, if constructed from hollow sections, shall have the ends closed off and be fully sealed against ingress of moisture. Galvanised hollow frame members shall have vent holes fully sealed with lead plugs after being galvanised.

m) Separation/galvanic isolation of the two dissimilar metals shall be required to prevent possible galvanic action.

5. Acoustic louvers

a) The louver shall be of weatherproof design suitable for and proven for use in the specific application.

b) For air intake louvers where the velocity through the effective pressure area exceeds 4m/s, or the pressure drop exceeds 30 Pa, provide side draining louvers.

c) Where clear wall height above louver ≥ 2m, provide gutter across top of louver to divert rain water to sides of louver face.

6. Material and equipment handling

a) Equipment shall be designed and installed to provide sufficient access and clearance to allow for the safe and efficient carrying out of routine inspections and maintenance activities.

b) All equipment shall be readily accessible for removal and be fitted with appropriate and readily identified lifting points.

c) Equipment shall be installed to the requirements of the manufacturer.

7. Platforms and access structures

a) The design of platforms and access structures shall take into consideration the structural steelwork requirements and Access structures and platforms of the mechanical construction standard.

b) Walkways and platforms shall be provided for maintenance access and inspections. Platforms should be extended such as to prevent reaching over handrails and at a suitable height for equipment handling.

c) Allow for site specific spill conditions and corrosion protection.

d) Stairways are preferred over ladders. Where ladders are provided it shall be extendable to a minimum of 1000mm through the chamber lid above ground level.

e) Platform system shall be complete with grating, kick-plates, stairs, handrails, ladders and all associated accessories.

f) Platform system material selection must be appropriate for the environment to prevent or reduce corrosion.

g) The design shall in general comply with AS/NZS 1657 with the following considerations:
 i. Walkways shall be provided for maintenance access and operational inspection.
 ii. Comply with Ministry of Business Innovation and Employment requirements.
 iii. Access platforms shall be provided at all equipment drives at a suitable height for maintenance.
 iv. Extend walkways to prevent the need to reach over railings for equipment access.
 v. Apply additional specific or calculated loads for equipment or pipework. This could include loads related to lifting equipment mounted to platforms/walkways and loads for equipment laydown and removal via trolley. Additional loading capacity shall be allowed as required for lifting equipment into mounting areas or where platforms may be used to transport equipment, or for laydown areas.
h) The walkway systems shall be suitable for installation outdoors, for exposure to continuous 90% relative humidity conditions, for ambient air temperature from 5°C to 35°C and for exposure to intermittent water or sludge splash, spill conditions and a marine coastal environment.

8. **Gantries and cranes**

a) Consideration should be given to use of temporary gantries and cranes to be retained as part of the permanent installation thereby reducing the need for mobile plant and ensuring the installation is adequate for equipment handling of the site.

b) Where gantries and cranes become permanent installations, they must be serviced after completion of the works before being handed over into Watercare’s service.

c) Fixed cranes can be considered where frequent equipment movement in a localised area is necessary or where the equipment is of a type that requires a specific handling method.

d) Gantry rails provide flexibility in the movement of equipment across distance, reducing downtime and increasing productivity, but is more expensive in initial design and setup.

e) Total cost option analysis that includes operational value must be completed for selecting the most appropriate crane system.

9. **Loading materials, hoppers and conveyors for handling**

Docking and loading, and materials handling plans must be prepared.

9.1 **Loading access**

a) Truck and vehicle movement should consider a one-direction access road for vehicle movement to reduce the necessity for manoeuvring areas to offloading areas and site road width.

b) The road surface around the site shall be level and rate HN-HO-72.

c) Suitable drainage for surface water must be provided.

d) Loading docks and road approach surface must not exceed 10% angle difference to prevent truck to platform misalignment, cargo topple and traction problems. Build-out blocks must be designed to make up the hypotenuse angle to prevent impact of the top of trucks with the facilities or structures.

e) Depressed docking or elevated platforms are recommended over downloading to road surface. Where forklifts or scissor platforms are used suitable clearances and bump protection must be provided for manoeuvring of this equipment.

f) Bumpers must be positioned to prevent vehicles damaging loading structures in line with the expected manoeuvrings for delivery and docking.

g) Some deliveries and material handling may require to be kept dry. The docking or offloading areas must then be suitably covered and protected from the elements.

9.2 **Hoppers and conveyers**

a) Hoppers and conveyors for loading product into processes must be positioned such as to limit the distance from the material offload area.

b) Lifting of product to hoppers by gantry is preferred over the use of a forklift. Gantry's must be suitably rated, refer to section 8.

c) Hoppers should be positioned at low or recessed levels and product transferred to elevation by a conveyor or alternatively a vacuum system for fine powdered product.

10. **Coating colours**

The appropriate coating system shall be determined with input from a coating engineer and identify the site-specific macro and micro environments. Also see Part D for specific corrosion protection considerations. The
designer must complete the project schedule in the Material Supply standard and provide it to the coating supplier to support the coating selection.

10.1 Water treatment plant colour scheme

<table>
<thead>
<tr>
<th>Service</th>
<th>Definition</th>
<th>Colour No. BS 5252</th>
<th>Colour (Resene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw water (incl. coagulant dosed water)</td>
<td>Untreated water arriving from catchments, underground, or river</td>
<td>12 C 39</td>
<td>Turtle green</td>
</tr>
<tr>
<td></td>
<td>Raw water dosed with coagulant/polyelectrolyte and pH adjusted prior to clarification in a clarifier or settling tank</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarified/settled water</td>
<td>Water decanted from clarifiers or settling tanks prior to filtration</td>
<td>18 D 41</td>
<td>Glacier</td>
</tr>
<tr>
<td>Filtered water (ex-sand filter, GAC or membrane) and chlorinated water</td>
<td>Water discharging from a sand filter, GAC tank or membrane filter and including chlorinated water</td>
<td>18 D 41</td>
<td>Glacier</td>
</tr>
<tr>
<td>Treated water and plant potable water supply</td>
<td>Fully treated water in the treated water tank or conduit ready for transmission to consumers and to plant use</td>
<td>18 E 53</td>
<td>Bahama blue</td>
</tr>
<tr>
<td>Backwash water/ backpulse water</td>
<td>Clean water for backwashing sand filters & GAC tanks or backpulsing membrane filters</td>
<td>14 C 33</td>
<td>Gum leaf</td>
</tr>
<tr>
<td>Wash water</td>
<td>Dirty water from backwashing sand filters & GAC filters</td>
<td>06 D 45</td>
<td>Peru tan</td>
</tr>
<tr>
<td>Wash water</td>
<td>Dirty water from backwashing sand filters & GAC filters</td>
<td>06 D 45</td>
<td>Peru tan</td>
</tr>
<tr>
<td>Wastewater</td>
<td>Dirty water from membrane filters</td>
<td>06 D 45</td>
<td>Peru tan</td>
</tr>
<tr>
<td>Wash water sludge</td>
<td>Settled sludge from wash water recovery tanks</td>
<td>06 D 45 & 08 C 39 in bands</td>
<td>Peru tan & Saddle brown in bands</td>
</tr>
<tr>
<td>Clarifier sludge</td>
<td>Sludge from clarifiers or settling tanks</td>
<td>06 D 45</td>
<td>Peru tan</td>
</tr>
<tr>
<td>Thickened sludge</td>
<td>Thickened sludge drawn from the base of sludge thickeners</td>
<td>08 C 39</td>
<td>Saddle brown</td>
</tr>
<tr>
<td>Wash Water supernatant</td>
<td>Water decanted from washwater recovery tanks</td>
<td>10 D 45</td>
<td>Yukon gold</td>
</tr>
<tr>
<td>Thickener supernatant</td>
<td>Water decanted from the top of sludge thickeners</td>
<td>10 D 45</td>
<td>Yukon gold</td>
</tr>
<tr>
<td>Centrate</td>
<td>Water separated from thickened sludge by centrifuge</td>
<td>10 D 45</td>
<td>Yukon gold</td>
</tr>
<tr>
<td>Filtrate</td>
<td>Water separated from thickened sludge by filter press</td>
<td>10 D 45</td>
<td>Yukon gold</td>
</tr>
<tr>
<td>Alum</td>
<td>Aluminium sulphate coagulant</td>
<td>8 B 17</td>
<td>Soft amber</td>
</tr>
<tr>
<td>Polyelectrolyte</td>
<td>Coagulant aid, powder, liquid in dilute or concentrated form</td>
<td>12 B 21</td>
<td>Flax</td>
</tr>
<tr>
<td>Lime</td>
<td>Hydrated lime</td>
<td>12 E 51</td>
<td>Lime</td>
</tr>
<tr>
<td>Caustic soda</td>
<td>Caustic soda</td>
<td>24 C 37</td>
<td>Trendy pink</td>
</tr>
<tr>
<td>Carbon slurry</td>
<td>Powdered activated carbon slurry</td>
<td></td>
<td>Black</td>
</tr>
</tbody>
</table>
Service Definition Colour No. BS 5252 Colour (Resene)

<table>
<thead>
<tr>
<th>Service</th>
<th>Definition</th>
<th>Colour No. BS 5252</th>
<th>Colour (Resene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO₂</td>
<td>Carbon dioxide gas</td>
<td>08 C 35</td>
<td>Twine</td>
</tr>
<tr>
<td>CO₂ solution</td>
<td>Carbon dioxide solution</td>
<td>08 C 35</td>
<td>Twine</td>
</tr>
<tr>
<td>Chlorine</td>
<td>Chlorine gas</td>
<td>08 E 51</td>
<td>Buttercup</td>
</tr>
<tr>
<td>Chlorine solution</td>
<td>Chlorine solution</td>
<td>08 E 51</td>
<td>Buttercup</td>
</tr>
<tr>
<td>Fluoride</td>
<td>Hydrofluosilic acid</td>
<td>04 E 56</td>
<td>Flame red</td>
</tr>
<tr>
<td>Hypochlorite</td>
<td>Sodium hypochlorite solution</td>
<td>08 E 51</td>
<td>Buttercup</td>
</tr>
<tr>
<td>Brine</td>
<td>Sodium chloride (salt) solution</td>
<td>20 C 33</td>
<td>Spindle</td>
</tr>
<tr>
<td>Citric acid</td>
<td>Citric acid (CIP)</td>
<td>10 D 41</td>
<td>Golden sand</td>
</tr>
<tr>
<td>Sodium bisulphite</td>
<td>Sodium bisulphite (CIP)</td>
<td>10 B 15</td>
<td>Pearl lusta</td>
</tr>
<tr>
<td>Stormwater</td>
<td>Manhole covers and pipes</td>
<td>10 A 03</td>
<td>Grey nickel</td>
</tr>
</tbody>
</table>

10.2 Resource recovery (wastewater) treatment plant colour scheme

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Colour No. BS 5252</th>
<th>RAL</th>
<th>Colour (Resene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centrifuges</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blowers</td>
<td></td>
<td>RAL 5015</td>
<td>Sky blue</td>
</tr>
<tr>
<td>Blowers panels</td>
<td>00 A 03 (grey)</td>
<td>RAL 7035</td>
<td>(Light grey)</td>
</tr>
<tr>
<td>Blowers</td>
<td></td>
<td>RAL 5002</td>
<td>Ultramarine blue</td>
</tr>
<tr>
<td>Inter-stage pumps</td>
<td></td>
<td>RAL 5010</td>
<td>Gentian blue</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCS 1950: S 9000 N</td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Other major pumps</td>
<td>RAL 8022</td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>or</td>
<td>or</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NCS 1950: S 5040 R 90 B (Mid-blue)</td>
<td>or</td>
<td></td>
</tr>
<tr>
<td>Sludge tanks</td>
<td>06 A 03</td>
<td>RAL 080 80 05</td>
<td></td>
</tr>
<tr>
<td>Clarifier mechanism</td>
<td>00 A 09</td>
<td></td>
<td>Haze grey</td>
</tr>
<tr>
<td>Equipment</td>
<td>Colour No. BS 5252</td>
<td>RAL</td>
<td>Colour (Resene)</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>-------------------</td>
<td>---------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>DAF Mechanism</td>
<td>00 A 09</td>
<td></td>
<td>Haze grey</td>
</tr>
<tr>
<td>Gantry cranes/monorails</td>
<td>08 E 53</td>
<td></td>
<td>Yellow</td>
</tr>
<tr>
<td>Transformers</td>
<td>08 C 33 (Beige)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11kV Switchgear</td>
<td>08 C 33 (Beige)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>415V MCCs</td>
<td>04 B 15</td>
<td>RAL 070 90 05 (Off-white)</td>
<td></td>
</tr>
<tr>
<td>Variable speed drives</td>
<td>08 C 33 (Beige)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribution boards</td>
<td>04 B 15</td>
<td>RAL 070 90 05 (Off-white)</td>
<td></td>
</tr>
<tr>
<td>Battery chargers</td>
<td>04 B 15</td>
<td>RAL 070 90 05 (Off-white)</td>
<td></td>
</tr>
<tr>
<td>DCS Panels</td>
<td>04 B 15</td>
<td>RAL 070 90 05 (Off-white)</td>
<td></td>
</tr>
<tr>
<td>Electric motors</td>
<td>Same colour as connected rotating equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conveyors</td>
<td>TBC, site specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymer tanks</td>
<td>10 B 15</td>
<td></td>
<td>Ivory</td>
</tr>
<tr>
<td>Sludge feed tanks</td>
<td>10 B 15</td>
<td></td>
<td>Ivory</td>
</tr>
<tr>
<td>Sludge/Polymer Pumps</td>
<td>TBC, site specific</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gravity belt thickeners</td>
<td>Stainless Steel Epoxy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blended sludge tanks</td>
<td></td>
<td></td>
<td>Sky white</td>
</tr>
<tr>
<td>Digester feed tanks</td>
<td></td>
<td></td>
<td>Sky white</td>
</tr>
<tr>
<td>Progressive cavity pumps</td>
<td></td>
<td>RAL 5015</td>
<td>Sky blue</td>
</tr>
<tr>
<td>Recirculation pumps</td>
<td>14 D 56</td>
<td>RAL 6032</td>
<td>Fun green</td>
</tr>
<tr>
<td>Plug valves</td>
<td></td>
<td>RAL 260 30 35 (royal blue)</td>
<td></td>
</tr>
<tr>
<td>Blended sludge polymer tanks</td>
<td>10 A 01 (white)</td>
<td>RAL 9003</td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td>Colour No. BS 5252</td>
<td>RAL</td>
<td>Colour (Resene)</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------------</td>
<td>-----</td>
<td>-------------------</td>
</tr>
<tr>
<td>Odour fans</td>
<td>White to match ducting</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part D – Seismic design of equipment, equipment supports and tanks
1. General

a) This part covers the requirements for seismic resistance of tanks, equipment and equipment supports and provide additional relevant information to assist designers. It does not override any statutory requirements.

b) All structural aspects of design shall be verified by a New Zealand Chartered Professional engineer experienced in the seismic design of industrial structures and tanks.

c) All equipment and equipment support shall comply with the applicable requirements of the NZ Building Act and the New Zealand Building Code and the applicable approved documents including the New Zealand Loadings code AS/NZS 1170 (Structural design actions) and the appropriate materials codes. Equipment inside buildings shall be designed to the appropriate risk level and as prescribed by NZS4219 (see section 5 below).

d) Pressure vessels shall, in addition, comply with the specific seismic requirements of the New Zealand Ministry of Transport, Marine Division.

e) Alternative design methods must be approved by the relevant Territorial Authority (to be sought by the designer) and accepted by Watercare.

f) The seismic design should consider the structural system comprising both the equipment and its supporting system.

g) The Supplier/Contractor shall submit with his design the following information:
 i. Weight and geometry of the equipment including positions of the centre of gravity and support points for maximum weight and normal operating weight.
 ii. Ductility capability.
 iii. Structural type and methods of achieving ductility (if applicable)
 iv. The equipment horizontal design action co-efficient.
 v. Displacements of equipment for the serviceability and ultimate limit states.
 vi. Foundation loadings (dead, basic live, earthquake and wind load, where applicable)

2. Tanks outside buildings

a) Refer to section 6 below for pressure vessels.

b) Seismic design of tanks should comply with either:
 - Seismic Design of Storage Tanks (New Zealand Society for Earthquake Engineering), or
 - API 650 - Appendix E; except that:

The earthquake loading coefficients should be derived from the seismic loading spectra specified in NZS 1170.5 with corrections for damping levels appropriate to storage tanks as follows:

\[C_d(T_i) = C_n(T_i,q).Z.R.N(T_i,D).S_p..DF/k_\mu \]

Where:

- \(C_d(T_i) \) = horizontal design action co-efficient for response mode i
- \(C_n(T_i,q) \) = spectral shape factor for structural period \(T_i \)
- \(Z \) = hazard factor
- \(R \) = return period factor (either \(R_c \) of \(R_u \) for the appropriate limit state under consideration. See below)
- \(N(T_i,D) \) = Near fault factor (assume = 1)
\[T_i \] = period of vibration for response mode i
\[S_p \] = structural performance factor (assume = 1)
\[k_\mu \] = inelastic spectrum scaling factor
\[\mu \] = displacement ductility factor (assume = 2)
\[DF \] = Damping Correction Factor (see below)

c) **Risk factor R.** When selecting which state applies to individual parts, consider equipment/tanks designated as post disaster or essential for operational continuity:

- **Serviceability Limit State SLS1:** \(R_s = 0.25 \)
- **Serviceability Limit State SLS2:**
 - i. Equipment/tanks essential to operational continuity after SLS2 earthquake: \(R_s = 0.75 \)
 - ii. Other equipment: SLS2 not required to be considered

- **Ultimate Limit State:**
 - i. Equipment/tanks designated as post disaster: \(R_u = 1.8 \)
 - ii. Equipment/tanks containing hazardous materials capable of hazardous conditions beyond the boundary: \(R_u = 1.8 \)
 - iii. Equipment/tanks part of the treatment process: \(R_u = 1.3 \)
 - iv. Other equipment/tanks: \(R_u = 1.0 \)

d) **Damping Correction Factor DF.** The NZS 1170.5 spectra are based on 5% viscous damping. For other damping values, the following correction factors shall be used:

<table>
<thead>
<tr>
<th>% Critical Viscous Damping</th>
<th>Correction Factor DF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5%</td>
<td>1.75</td>
</tr>
<tr>
<td>2%</td>
<td>1.33</td>
</tr>
<tr>
<td>5%</td>
<td>1.00</td>
</tr>
<tr>
<td>10%</td>
<td>0.80</td>
</tr>
<tr>
<td>15%</td>
<td>0.71</td>
</tr>
<tr>
<td>20%</td>
<td>0.67</td>
</tr>
</tbody>
</table>

For the convective mode, the appropriate value of damping is 0.5%. For the impulsive mode, refer to **Seismic Design of Storage Tanks** (New Zealand Society for Earthquake Engineering), or **API 650 - Appendix E**.
e) Tank materials shall satisfy to provisions of the appropriate material supply standard, except where these conflict with the requirements above.

3. Specific earthquake analysis

a) For all structures exceeding 10m in height, or, T1 > 0.4sec or, T1 > 2sec and regular in accordance with NZS 1170.5, a dynamic analysis shall be carried out to determine the following:
 • The degree of ductility demand on the yielding elements.
 • The acceleration of equipment attached to the vessel.
 • The structural separations required for connection bridges and appurtenances.

4. Seismic loading coefficient

Seismic loading shall be determined using NZS 1170.5. The relevant loading spectrum for the site subsoil shall be confirmed.

5. Equipment supported by building structures

a) In general, equipment seismic loadings will be larger the higher in the building the equipment is located, because earthquake induced accelerations in a structure increase with height.

b) Equipment fixed to the building structures with connections generally have little or no ductility capability and shall be designed to NZS 4219 “Seismic Performance of Engineering Systems in Buildings”. The design shall be dependent on:
 • Basic seismic coefficient for the structure.
 • Height of the centre of mass of the structure relative to the equipment.
 • Whether the structure has been designed to be ductile.

c) When the equipment mounting is ductile, the seismic coefficient shall be modified in accordance with NZS 1170.5 and NZS 4219.

6. Free standing equipment

a) Most items will have no provision for ductility. These shall be designed to remain elastic under the earthquake loading and will have seismic coefficients depending on the natural period of vibration.

b) Items with ductility capability may be designed with the lower seismic forces with consequent saving in structure and foundations.

7. Pressure vessels

The design seismic coefficient for pressure vessels shall be determined in accordance with Engineering NZ practice note 19 “Seismic resistance of pressure equipment and its supports” Jan 2013.
Part E – Specific materials considerations for processes
1. Introduction

a) This part shall be read with the Watercare material supply standard (MS) and shall take precedence where in discrepancy with MS as to convey the specific requirements for process plants.

b) Materials and equipment must be specified to meet performance, construction, quality, space and structural loading requirements.

c) Pressure rating selection is in accordance with the design needs, but consideration should be given to common stock-keeping of spare parts to provide maintenance flexibility through common selection.

d) Materials must be compatible with other materials and equipment and must be corrosion resistant.

e) All material components must be specified except for incidentals that may be reasonably expected to be supplied as part of the installation. However, these must be verified to be of industrial standard and fit for purpose in the installation environment.

2. Materials that may not be used

The following materials may not be used in any part of equipment or design:

- Cadmium or cadmium plating
- Chromium plating
- Untreated exposed copper or copper-based alloys (the exception of copper busbars and cabling exposed ends which shall be tin plated)
- Electroplated zinc coated carbon steel
- Asbestos
- Cupronickel
- PCBs or other similar hazardous materials

3. Piping systems

Pipe materials for process works shall in general comply with ASME B31.3.

3.1 Mild Steel (MS)

a) Mild steel pipe shall comply with NZS 4442.

b) Steel tube or tubulars shall comply with BS EN 10255 Non-alloy steel tubes suitable for welding and threading, in medium weight, or heavier if service conditions require.

c) Galvanised pipework shall be steel tube or tubulars and shall comply with BS EN 10255 in medium weight, or heavier if service conditions require.

d) Galvanised pipes shall not be used for pipework with a diameter greater than 100 mm.

3.2 Stainless Steel

a) Grade 316L or Grade 316 stainless steel pipe and fittings.

b) Stainless steel pipe shall comply with ASTM A312M-13b.

c) Spiral wound tubing shall not be used.

d) Line pipe shall be minimum schedule 10.

3.3 Ductile Iron

a) Ductile iron pipework shall comply with AS/NZS 2280 (Pressure pipe), BS EN 598:2007 +AS1, BS EN 545 and BS EN 969.

b) Pipework shall be light cement mortar lined, unless specified otherwise.

c) All pipework shall be Class K9 except for flanged pipework which shall be Class K12, unless otherwise specified.
3.4 Polyvinyl Chloride (PVC)

a) Pipe shall be manufactured to AS/NZS 1477 (Pressure pipe), AS/NZS 1260 or AS/NZS 1254 (Drain pipe) as appropriate for the service and duty.
b) PVC must not be used on pressure systems (only gravity lines) except for chemical dosing systems or as otherwise approved.
c) Thermal expansion using expansion loops, or another proprietary device as required must be considered.

Note: PVC pipe must be either covered or protected with a coating system from direct sunlight.

3.5 Acrylonitrile Butadiene Styrene

a) ABS: Acrylonitrile Butadiene Styrene pipework shall comply with AS/NZS 3518.
b) ABS pipework shall be suitably rated for the design service, but as a minimum Class 9 shall be used.
c) The pipework shall be installed in accordance with AS IEC 60300.2.
d) Thermal expansion using expansion loops, or another proprietary device as required must be considered.

Note: ABS pipework must not be used for pressure systems or sludge applications.

3.6 Polyethylene

Note: PE pipe must be either covered or protected with a coating system from direct sunlight. UV protection is limited to short term resistance only.

As per the material supply standard

a) Thermal expansion using expansion loops, or another proprietary device as required must be considered.

3.7 Fibre Reinforced Plastic

a) Fibre reinforced plastic pipes shall comply with AWWA C950, AWWA M45 and PD ISO/TR10465-2 as appropriate.

Note: Fibre reinforced plastic pipes must not to be used for pressure applications.

3.8 Hose

a) Hose for process pipework shall be textile reinforced rubber, Dunlop D214 or equal.
b) Hose for wash down purposes shall be GEM type or equal.
c) Reels for hose storage shall be fabricated from stainless steel and be supplied with 10 metres of 32 mm diameter hose (PVC).
d) Flow shall be controlled at the downstream end by use of a proprietary nozzle allowing adjustment from jet through spray to stop.

3.9 Subsoil Drainage

Subsoil drainage pipes shall be class D PVC-U to Transit New Zealand F2 (PN12) or heavy wall (SDR 17) polyethylene. This is equivalent to SN16 rating.
4. Pipe fittings

4.1 General

Unless otherwise specified, the fitting materials and ratings shall be the same as the adjacent pipe material and the related standard.

4.2 Stainless steel and Mild Steel

a) Fittings may be fabricated from the same grade of steel as the adjacent pipe with the same coating and lining material. Refer to the mechanical construction standard for the appropriate welding practices.

b) Mild steel wrought pipe fittings for steel tube (including galvanised) shall comply with BS EN 1024 heavy weight.

c) Stainless steel wrought pipe fittings for tube shall comply with ASTM A403M – 19a.

4.3 Polyvinyl Chloride (PVC) and Acrylonitrile butadiene styrene (ABS)

a) PVC fittings should be injection moulded.

b) Fittings must have the same pressure rating than the adjacent pipe.

c) Special manufactured pieces should be avoided and must be approved on a case-by-case basis.

d) Fittings shall be double socket.

e) All isolating valves 50 mm and smaller shall be double union ball valves with PVC body and ball and with PTFE ball seats and seals, or as appropriate for the fluid and duty. Check valves shall be of a similar specification. Valves greater than 50 mm shall be flanged unless noted otherwise.

f) Enough additional union couplings shall be provided in the pipeline to facilitate removal for maintenance or replacement.

4.4 Concrete

a) Prefabricated RC pipe fittings shall be factory fabricated by the pipe manufacturer.

4.5 Vitrified Clay

a) Moulded VC fittings shall comply with BS EN 295-1 and shall be as manufactured by the manufacturer of the adjacent pipe.

5. Jointing selection

5.1 General

a) The method of jointing of pipes, valves and fittings shall be specified by the designer.

b) All connections over 50mm shall be flanged or welded.

c) The number of joints must be minimised but keeping in mind to facilitate the removal for maintenance or replacement of sections and key fittings.

5.2 Steel Welding

Steel welding must follow the mechanical construction standard and may include:

- Arc welding
- Oxy acetylene welding

5.3 HDPE

a) Refer to the material supply and general civil construction standards for typical jointing methods.
b) Butt-weld shall take precedence over electrofusion welding or other mechanical means of jointing.

5.4 PVC

a) Below ground installations should be ring jointed and mechanically coupled. For below ground installations refer to the general civil construction standard.
b) Above ground installations may be solvent welded and union coupled.
c) Solvent weld joints shall:
 • Be made with pressure grade solvent cement (and associated primer and cleaners) to the manufacturer’s method.
 • Have the socket pushed over the spigot and rotated a quarter to a half turn to ensure the full depth is reached. Witness marks should be made.
 • Excess cement must be removed from both internal and external surfaces.
 • Not be disturbed for a minimum of 5 minutes after being made.

5.5 Flanges

Note: On existing sites the flanges should be selected to the same standard of most existing flanges, e.g. if the site has mostly ASME flanges, then the appropriate rated ASME flanges should be selected for the new installation.

a) Flanges should typically be selected as per the flange patterns nominated in the material supply standard and assembled in accordance with the general mechanical construction standard.
b) All galvanised surfaces in contact with stainless steel shall be coated or painted to provide protection against galvanic corrosion.
c) Machined flange faces shall be coated with a suitable soluble lacquer for corrosion protection during storage only and must be cleaned on assembly.
d) Flange jointing sets shall include all bolts, nuts, washers and flange gaskets or insertions necessary for jointing together the flanges of the specific diameter and pressure rating.
e) Flanged joints shall be made with bolt sets, bolt studs with nuts on each end, or studs with nuts where the flange is tapped.
f) The gasket material must be selected suitable to contact with the conveyed media and operational duty.

5.6 Flexible couplings

a) Rubber ring joints shall be of suitable material for the contact with the media being conveyed and the operational duty. Rubber rings may not be reused.
b) Victaulic fittings may be considered in process plants where the joints are visible, not be buried, and must be of suitable material selection to not cause galvanic action and be suitable for the conveyed media.

5.7 Pressed-fit couplings

a) Pressed couplings must be installed to the supplier’s methodology using brand specific proprietary pressing tools.
b) The rubber seal ring must be selected suitable for contact with the conveyed media and operational duty.

6. Valve selection

a) Valve type selection – (graph: application (grey) and attributes(blue)):
b) Waterworks valves with ductile iron body material as described in the materials supply standard are suitable for mainstream water application throughout the processes but may not be suitable for some chemical process systems.

c) For mainstream valves carrying slurries the abrasiveness of the media must be evaluated to ensure correct sealing mechanisms and any additional lining methods are specified.

d) When selecting waterworks valves for mainstream purposes consideration must be given to the micro location of the valve to ensure suitable external coating selection above what is standard provision from the manufacturer. Considerations may include solvents, volatile organic compounds, or inert gasses. The additional coating specification must be specified following the direction provided in the material supply standard for corrosion protection.

e) Industrial valve standards apply as follows as may be appropriate for the media:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Standard description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTM B61</td>
<td>Standard specification for steam or valve bronze castings</td>
</tr>
<tr>
<td>ASME B16.33</td>
<td>Manually operated metallic gas valves for use in gas piping systems up to 125 psi</td>
</tr>
<tr>
<td>ASTM F1794</td>
<td>Standard specification for hand-operated, globe-style valves for gas (except oxygen gas) and Hydraulic systems</td>
</tr>
<tr>
<td>ISO 9393-2</td>
<td>Thermoplastics valves for industrial applications</td>
</tr>
<tr>
<td>ISO 7508</td>
<td>Un-plasticized Polyvinyl Chloride (PVC-U) valves for pipes under pressure</td>
</tr>
<tr>
<td>ISO 19240</td>
<td>Industrial valves – Lines metal quarter turn and check valves for chemical process and related industries</td>
</tr>
<tr>
<td>BS EN 1984</td>
<td>Industrial valves Steel gate valves</td>
</tr>
<tr>
<td>EN 593</td>
<td>Industrial valves Metallic butterfly valves for general purposes</td>
</tr>
<tr>
<td>BS EN 12288</td>
<td>Industrial valves. Copper alloy gate valves</td>
</tr>
<tr>
<td>BS EN 1983</td>
<td>Industrial valves. Steel ball valves</td>
</tr>
</tbody>
</table>
Depending on the media transported through the valve, the valve lining must be specified appropriate to the application and may include but is not limited to:

<table>
<thead>
<tr>
<th>Material</th>
<th>Property considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soft natural rubber</td>
<td>Good in either wet or dry abrasive services, water, and some acids and alkalis. Soft natural rubber has one of the best abrasion resistances when strong chemicals are not present. Temperature -30 to 80°C</td>
</tr>
<tr>
<td>Hard rubber</td>
<td>Hard rubber is a good general chemical resistant lining that can be used in slightly higher temperatures than its soft counterpart. Temperature -30 to 90°C</td>
</tr>
<tr>
<td>GRAPHITE BASED HARD RUBBER</td>
<td>Graphite hard rubber has a good chemical resistance and at higher temperatures than the normal hard and soft natural rubbers. Maximum temperature 120°C</td>
</tr>
<tr>
<td>EPDM: (Ethylene Propylene Diene Monomer)</td>
<td>General purpose material. Excellent chemical resistance to a wide variety of corrosive elements including acids, caustics and hot water. It is abrasion resistant and good for high temperature services. EPDM has poor oil resistance. It is also satisfactory for intermittent steam sterilization. Temperature range -30 to 150°C</td>
</tr>
<tr>
<td>Neoprene</td>
<td>Widely used in wastewater applications. A good choice for general purpose chemical resistance where the media contains entrained oils. It also resists aldehydes, certain alcohols, fertilizers, explosives, petroleum, air, acids alkalis, and is abrasive resistant. In most cases it is interchangeable with Buna-N (Nitrile) Rubber. Temperature range -30 to 90°C</td>
</tr>
<tr>
<td>BUNA--N: (Nitrile Butadiene Rubber)</td>
<td>A general-purpose oil resistant polymer known as nitrile rubber. It is a copolymer of butadiene and acrylonitrile. Buna-N has a good solvent, oil, water, and hydraulic fluid resistance. It displays good compression set, abrasion resistance, and tensile strength. Nitrile should not be used in highly polar solvents such as acetone and methyl ethyl ketone, nor should it be used in chlorinated hydrocarbons, ozone, or nitro hydrocarbons. In most cases it is interchangeable with Neoprene. Maximum temperature 135°C</td>
</tr>
<tr>
<td>Butyl</td>
<td>A good choice for gases because it has a very low vapor and gas permeability. Also good for many acids and alkalis. Good for applications involving steam sterilization. Temperature -28 to 120°C</td>
</tr>
<tr>
<td>Chlorobutyl</td>
<td>Chlorobutyl has excellent abrasion and corrosion resistant properties. The maximum recommended temperature for Chlorobutyl is 80°C</td>
</tr>
<tr>
<td>Polypropylene</td>
<td>A general-purpose lining with good chemical and temperature resistance. Utilized for water treatment, chemical processing, most plating fluids, and steel mill pickling lines, foodstuff, and drinking water. Temp: -20 to 90°C</td>
</tr>
<tr>
<td>ECTFE (HALAR): (Ethylene Chlorotrifluoroethylene)</td>
<td>Excellent wear and abrasion qualities, excellent corrosion resistance, low coefficient of friction, and excellent electrical properties. Maximum use temperature 175°C</td>
</tr>
<tr>
<td>ETFE (TEFZEL): (Ethylene Tetrafluoroethylene)</td>
<td>Outstanding resistance to chemicals and strong acids. Also has high abrasion resistance for tough services. Below 175°C has no known solvent.</td>
</tr>
</tbody>
</table>
Material Property considerations

<table>
<thead>
<tr>
<th>Material</th>
<th>Property considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTFE (XYLAN): (Polytetrafluoroethylene)</td>
<td>Good wear resistance, low coefficient of friction, and fair corrosion resistance. Use Temperature 230 - 260°C</td>
</tr>
<tr>
<td>PFA: (Perfluoroalkoxy)</td>
<td>Good wear and abrasion qualities, excellent corrosion resistance, low coefficient of friction, and excellent release capabilities. Max use temperature 270°C</td>
</tr>
<tr>
<td>PVDF (KYNAR): (Polyvinylidene Fluoride)</td>
<td>Offers very low permeability. A strong, tough abrasion resistant fluorocarbon material resistant to most acids, bases, and organic solvents. It is ideally suited to handling wet or dry chlorine, bromine, and other halogens. Temperature -20 to 135°C.</td>
</tr>
<tr>
<td>FEP: (Fluorinated Ethylene Propylene)</td>
<td>Good wear and abrasion qualities, excellent corrosion resistance, low coefficient of friction, and excellent release characteristics. Max use temperature 200°C</td>
</tr>
<tr>
<td>Viton</td>
<td>Offers exceptional resistance to oils, most chemicals and many solvents at elevated temperatures. It can be used in most applications involving mineral acids, salt solutions and chlorinated hydrocarbons. Viton is not recommended for ammonia, its derivatives or polar solvents, e.g. Acetone. -28 to 150°C</td>
</tr>
<tr>
<td>Blue glass (CHEM)</td>
<td>Intended for viscous chemical applications such as wastewaters where a smooth lining is necessary to prevent process media from sticking to the walls of the valve.</td>
</tr>
<tr>
<td>Green glass (NON-CHEM)</td>
<td>Intended for non-chemical applications such as wastewaters where a smooth lining is necessary to prevent viscous fluids from sticking to the walls.</td>
</tr>
<tr>
<td>Polyurethane</td>
<td>Polyurethane has excellent abrasion resistance. Temperature -30 to 65°C</td>
</tr>
<tr>
<td>FDA epoxy</td>
<td>Good wear and abrasion qualities, good corrosion resistance. Max use temperature 100°C.</td>
</tr>
<tr>
<td>PVC</td>
<td>PVC has resistance to a variety of chemicals including oxidizing acids and provides excellent abrasion resistance. Max use temperature 70°C.</td>
</tr>
</tbody>
</table>

7. Fixings and brackets

- Fixings and restraints shall ensure that the equipment withstands seismic loading without excessive stress or displacement, in accordance with the NZ Building Code and NZS 4219.
- Electrical equipment and instrumentation must not be fixed to handrail systems or pipework.
- Sensor lines should allow for vibration such as with coiled pipe or additional slack to allow for movement.
- Also see section 7 on corrosion control. Care must be taken when selecting dissimilar materials to prevent galvanic action.

8. Dose pumps

a) Chemical dosing pumps shall be a positive displacement type.
b) Minimum turndown of 100:1.
c) Power supply shall be single phase.
d) The pumps shall be capable of providing a flow rate as defined in the data sheets that must be provided during design.

e) Dosing pumps shall have an analogue input for pump speed control, a stop/start input and a fault signal.

f) Dosing pumps shall be standardised throughout the site where practicable.

g) The pumps shall provide accurate and controllable dosing of each chemical.

h) All wetted materials shall be appropriate for contact with the chemical being pumped.

i) Dosing pumps shall be able to pump degassing liquids such as sodium hypochlorite. Auto degassing features may be permissible if suitable for the application.

j) Appropriate connection joints from the dosing pump to the suction and discharge pipework shall be included.

9. Corrosion control

a) When selecting corrosion control measures, consideration must be given to the micro location of the assets to ensure suitable external coating selection above what is standard provision from the manufacturer.

b) Considerations may include solvents, volatile organic compounds, or inert gasses from adjacent processes that may impact on the corrosion of the assets in another area.

c) Internal corrosion protection for specific media must be considered.

d) The coating specification of any additional corrosion protection measures must be specified following the direction provided in the material supply standard for corrosion protection.