Greenhithe Bridge Watermain Duplication and Causeway

Technical Report B – Soil, Sediment and Groundwater Contamination

03 June 2015

Revision	Status	Date	Description/Change to Report	Author(s)	Task Manager Check	Project Manager Approval
		V -			Signatures	
			6.6			
1	Draft	04/12/2014	Issued to URS, by Jacobs, for review	Walter Starke – Jacobs	Alan Hockey- Jacobs	
2	Draft	16/12/2014	Issued to URS, by Jacobs, for review	Walter Starke – Jacobs	Alan Hockey- Jacobs	<u>.</u>
3	Final-draft	11/03/2014	Issued to URS, by Jacobs, incorporating Watercare comments, for review	Walter Starke – Jacobs	Alan Hockey- Jacobs	
	Final-draft	17/03/2014	Issued to URS, by Jacobs, incorporating URS' comments, for review	Walter Starke – Jacobs	Alan Hockey- Jacobs	3
5	Final	6/05/2015	Issued to Watercare, by Jacobs, incorporating Watercare comments for review	Walter Starke – Jacobs	Alan Hockey- Jacobs	e e
6	Final	03/06/2015	Issued to Watercare, by Jacobs, incorporating Watercare final comments as per AECOM email dated 22/05/15	Walter Starke – Jacobs	Alan Hockey- Jacobs	

Note: Since 17 October 2014 URS is fully owned by AECOM

Document Delivery

Jacobs New Zealand Limited (Jacobs) provides this document in either printed format, electronic format or both. Jacobs considers the printed version to be binding. The electronic format is provided for the client's convenience and Jacobs requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the *Electronic Transactions Act 2002*.

TABLE OF CONTENTS

Ex			ımary	
1			tion	
2			he Bridge Watermain Duplication and Causeway Proposed Works	
3	Pur		objectives and scope of work	
	3.1	•	oose	
	3.2	•	ectives	
	3.3		oe of Work	
	3.4		er Relevant Reports	
4			Requirements: Contaminated land Assessment Criteria	
	4.1		onal and Auckland Criteria	
	4.2		Soil	
	4.3	ALW	[/] Plan	
	4.3.	_	Rule 5.5.41- Soil and Sediment	
	4.3.	2	Rule 5.5.47- Groundwater	. 14
	4.4	PAU	P	
	4.4.	1	Provision H.4.5.2.1.3	. 15
	4.4.	_	Provision H.4.18.2.1.1.2	
	4.5	Ado	pted Site Assessment Criteria	. 17
	4.5.	1	Soil and Sediment: Adopted Site Assessment Criteria	. 17
	4.5.	2	Groundwater: Adopted Site Assessment Criteria	. 18
5	Hist		l aerial photograph review	
	5.1	Brie	f History of Hobsonville Airbase	. 20
6	Cou	ncil s	ite contamination enquiry	. 22
7	Pote	ential	l for contamination	. 23
8	Site	inve	stigation works	. 24
	8.1	Obje	ective	. 24
	8.2	Sam	pling Methodology: Soil, Sediment and Groundwater	. 24
	8.3	Field	lwork	. 24
	8.4	Addi	itional Fieldwork	. 24
9	Lab	orato	ry Testing	. 25
10	Off-	Site [Disposal of Soil and Sediment	. 26
11	Asse	essm	ent of site test results	. 28
	11.1	Soil	Contamination Assessment	. 28
	11.2	Sedi	ment Contamination Assessment	. 28
	11.3	Grou	undwater Contamination Assessment	. 29
12	Asse	essmo	ent of Environmental Effects	. 31
	12.1	Cond	ceptual Model Development	. 31
	12.2	Sour	· · · · · · · · · · · · · · · · · · ·	. 31
	12.3	Path	ıways	. 31
	12.4		ptors	
	12.5	Cond	clusion: Assessment of Human Health and Environmental Effects	. 32
13	Con	clusio	ons	. 33
	13.1	Cond	clusions	. 33
	13.1		Statutory Assessment	
	13.1		Sediment Contamination Assessment	
	13.1		Soil Contamination Assessment	
	13.1		Groundwater	
	13.1		Assessment of Effects: Potential Soil, Sediment and Groundwater Contamination	
14			ns	
15			es	
16			tions	

APPENDICES

HISTORICAL AERIAL PHOTOGRAPH REVIEW Appendix A Appendix B HAZARDOUS ACTIVITIES AND INDUSTRIES LIST Appendix C **COUNCIL SITE CONTAMINATION ENQUIRY** SAMPLING METHODOLOGY: SOIL, SEDIMENT & GROUNDWATER Appendix D Appendix E ENVIRONMENTAL SAMPLING AND TESTING REPORT (OPUS, 2014A) Appendix F BOREHOLE LOGS: GEOTECHNICAL FACTUAL REPORT (OPUS, 2014B) SOIL CONTAMINATION ASSESSMENT Appendix G Appendix H SEDIMENT CONTAMINATION ASSESSMENT **UPPER CONFIDENCE LIMIT- HEAVY METALS** Appendix I

Appendix J ADDITIONAL SEDIMENT TESTING- PROPOSED CONSTRUCTION PLATFORM-NORTHERN

INTERCEPTOR PROJECT

EXECUTIVE SUMMARY

This technical report presents the findings of the potential soil, sediment and groundwater contamination effects related to the construction, operation and maintenance of Watercare's proposed Greenhithe Bridge Watermain Duplication and Causeway project (Project). It supports the *Greenhithe Bridge Watermain Duplication and Causeway – Assessment of Effects on the Environment* report ("the AEE") prepared by AECOM Consulting Service (NZ) Ltd (AECOM) and Jacobs New Zealand Ltd (Jacobs).

This report provides the following:

- a) A brief overview of the proposed works.
- b) Outline of the statutory framework relevant to soil, sediment and groundwater contamination.
- c) The purpose, objectives and scope of work for the soil, sediment and groundwater contamination assessment in relation to the Project.
- d) A desk top study to assess if current or historical activities at the Project site have or had the potential to cause ground contamination.
- e) Fieldwork and laboratory testing of the soil, sediment and groundwater to provide an environmental baseline for the site.
- f) An assessment of the actual or potential effects on the environment (construction, operation and maintenance), having reference to the statutory framework and any other environmental factors considered relevant.
- g) Recommended mitigation and management measures.

Conclusions

No activity or industry listed on the Hazardous Activities Industries List (HAIL) was identified within the Project site. It is therefore considered that the requirements of the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES Soil) do not apply to the Project site.

The Project site's soil, sediment and groundwater contaminant levels have been assessed against the requirements of the contaminated land rules of the Auckland Council Regional Plan: Air, Land and Water (ALW Plan) and the Proposed Auckland Unitary Plan (PAUP).

Sediment Contamination Assessment

- a) A Detailed Site Investigation (DSI) shows that the sediment contaminant levels are:
 - Below the laboratory level of detection for organic parameters except for minor amounts of Polycyclic Aromatic Hydrocarbons.
 - ii. Below the Auckland background concentrations for inorganic soils except for Arsenic.
 - iii. Below the soil contaminant criteria specified in Rule 5.5.41 of the ALW Plan and below the soil contaminant criteria specified in provision H.4.5.2.1.3 of the PAUP.

- b) Off-site sediment disposal may be at a licensed managed fill site or licensed solid waste landfill, i.e. not to a licensed cleanfill site. On-site disposal of the sediment or reuse of the sediment in, for example, mudcrete is permitted, from a contamination perspective.
- c) The sediment contamination levels are below the Interim Sediment Quality Guidelines- Low Trigger Values (ANZECC, 2000), when using the 95% Upper Confidence Limit of the test results.
- d) Technical Report D contained in Volume 2 of the AEE provides an ecological assessment for the Project.

Soil Contamination Assessment

- e) No resource consent is required under the ALW Plan since the requirements of Rule 5.5.41 are met, i.e. the soil contaminant levels are below the Schedule 10 contaminant criteria and other criteria referenced in Rule 5.5.41.
- f) No resource consent is required under the PAUP since the requirements of provision H.4.5.2.1.1 are met.
- g) The soil contaminant levels meet the Auckland background soil quality for non-volcanic soils and therefore spoil can be removed off-site to a licensed cleanfill site, if required. Equally the spoil can be reused on-site

Groundwater

- h) No resource consent is required under the ALW Plan since the requirements of Rules 5.5.41(e) and 5.5.58(c) are met, i.e. the discharge of groundwater contaminant levels, after reasonable mixing, are below the ANZECC (2000) Freshwater criteria for 95% level of protection of species.
- i) No resource consent is required under the PAUP since the requirements of provision H.4.18.2.1.1.2 are met.
- j) If temporary groundwater disposal is required during construction of the proposed valve chambers and other excavations it may be disposed of as stormwater.

Assessment of Effects: Potential Soil, Sediment and Groundwater Contamination

- k) It is considered that the potential soil, sediment and groundwater contamination effects related to the construction, operation and maintenance of the Project are less than minor.
- I) It is considered that potential adverse effects on the environment arising from unforeseen/unknown ground contamination at the Project site can be avoided, mitigated and remedied by ensuring that the contractor adheres to the protocols listed in a Project Construction Management Plan (CMP). The CMP will be prepared once the contractor has been appointed and the CMP will be submitted to Council prior to construction as discussed in Section 2.3.4 of the AEE.

1 INTRODUCTION

Jacobs New Zealand Ltd (Jacobs) has been commissioned by Watercare Services Limited (Watercare) to assess the potential soil, sediment and groundwater contamination effects related to the construction, operation and maintenance of Watercare's proposed Greenhithe Bridge Watermain Duplication and Causeway project (Project).

The Project comprises:

- a) The construction of a new watermain on the northern side of the Greenhithe Bridge to duplicate the existing North Harbour 1 Watermain already located on the southern side of the bridge, and.
- b) Widening along the northern side of the existing State Highway 18 motorway causeway to accommodate the new watermain, as well as wastewater pipelines and associated facilities which form part of Watercare's proposed Northern Interceptor project.

The proposed water and wastewater infrastructure is required in order to maintain water and wastewater service levels and to provide for future growth.

The proposed Greenhithe Bridge Watermain Duplication and Causeway project requires various resource consents under the Resource Management Act 1991 ("RMA"). This technical report provides specialist input for the *Greenhithe Bridge Watermain Duplication and Causeway – Assessment of Effects on the Environment* report (AEE) report prepared by AECOM and Jacobs which supports the resource consent application. The works described in the AEE have been considered in the technical assessment presented in this report.

This report provides the following:

- a) A brief overview of the proposed works (Section 2).
- b) The purpose, objectives and scope of work for the soil, sediment and groundwater contamination assessment in relation to the Project (Section 3).
- c) Outline of the statutory framework relevant to soil, sediment and groundwater contamination (Section 4).
- d) A desk top study to assess if current or historical activities at the Project site have or had the potential to cause ground contamination (Sections 5-7)
- e) Fieldwork and laboratory testing of the soil, sediment and groundwater to provide an environmental baseline for the site (Sections 8-10).
- f) An assessment of the actual or potential effects on the environment (construction, operation and maintenance), having reference to the statutory framework and any other environmental factors considered relevant (Sections 11 and 12).
- g) Recommended mitigation and management measures (Section 13).

The new watermain will eventually form part of Watercare's future North Harbour 2 (NH2) Watermain project. The proposed widening of the motorway causeway will also incorporate wastewater pipelines and associated facilities which form part of Watercare's proposed Northern Interceptor (NI) project.

Separate technical reports have or will be prepared for the future NH2 Watermain project and for the balance of the NI project.

2 GREENHITHE BRIDGE WATERMAIN DUPLICATION AND CAUSEWAY PROPOSED WORKS

The proposed Greenhithe Bridge Watermain Duplication and Causeway works assessed in this report are the construction, operation and maintenance of:

- a) The proposed watermain from Station Street in Hobsonville, under the motorway to the coastal edge this will involve open trenching from Station Street to the motorway, and trenchless construction under the motorway;
- b) Proposed causeway widening to accommodate the proposed watermain and wastewater pipelines – the proposed widening is approximately 860 metres in length and 15-50 metres in width along the northern side of the existing motorway causeway;
- c) The proposed watermain attached to the underside of the Greenhithe Bridge; and
- d) A proposed watermain cross connection chamber close to the eastern abutment of the Greenhithe Bridge.

The proposed works are described in detail in the AEE. The works described in section 2.3.4 of the AEE and shown on the drawings are provided in Volume 3 of the AEE.

3 PURPOSE, OBJECTIVES AND SCOPE OF WORK

3.1 Purpose

The purpose of this report is to assess the potential effects on soil, sediment and groundwater contamination and how it may potentially affect the construction, operation and maintenance of the Project. It is one of a series of technical reports which supports the AEE for the Project.

3.2 Objectives

The objectives of the report are to:

- a) Identify relevant regulatory considerations;
- b) Assess the potential effects that construction, operation, maintenance or decommissioning of the Project may have on soil, sediment and groundwater contamination; and
- c) Identify appropriate control measures to minimise potential risks associated with soil, sediment and groundwater contamination on construction, operation, maintenance or decommissioning of the Project.

3.3 Scope of Work

In order to achieve the objectives a statutory assessment was undertaken followed by a soil, sediment and groundwater contamination assessment. The latter was carried out in two phases.

The first phase involved a desk top study to assess if current or historical activities at the site have or had the potential to cause ground contamination. The second phase comprised subsurface investigations to establish the soil, sediment and groundwater quality at the site.

The Phase 1 scope of work comprised:

- a) Historical aerial photograph review.
- b) Site contamination enquiry with Auckland Council (Council).

The Phase 2 scope of work consisted of:

- a) Soil sampling near the locations of the proposed excavations for:
 - New Watermain to NH1 pipe connection- west end: the jacking and receiving pits located north and south of SH18.
 - ii. Watermain to NH1 pipe connection- east end: the pit to form the valve chamber.
- b) Sediment sampling of the existing sediments located within the footprint of the proposed causeway widening and NI 'tab' area.
- c) Groundwater sampling at one of the proposed valve chamber excavation sites located west of Greenhithe Bridge
- d) Laboratory testing of soil, sediment and groundwater samples for a range of organic and inorganic parameters.

- e) Assessing the soil, groundwater and sediment test results against relevant regulatory and offsite disposal requirements.
- f) Preparing this soil, sediment and groundwater contamination report.

3.4 Other Relevant Reports

This report should be read in conjunction with the following reports:

- a) AEE- Greenhithe Bridge Watermain Duplication and Causeway, Volume 1.
- b) AEE- Greenhithe Bridge Watermain Duplication and Causeway, Volume 3 Drawings
- c) Technical Report C Groundwater, Greenhithe Bridge Watermain Duplication and Causeway, Volume 2.
- d) Technical Report D Ecology, Greenhithe Bridge Watermain Duplication and Causeway, Volume 2.

4 STATUTORY REQUIREMENTS: CONTAMINATED LAND ASSESSMENT CRITERIA

This section discusses the national and Auckland assessment criteria, in terms of soil, sediment and groundwater.

4.1 National and Auckland Criteria

The contaminated land assessment criteria in the Auckland region are covered by:

- a) The Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011, commonly referred to as the NES Soil.
- b) The Auckland Council Regional Plan: Air, Land & Water (ALW Plan).
- c) The Proposed Auckland Unitary Plan (PAUP)

The PAUP was notified on 30 September 2013. The PAUP is currently going through the public notification and submissions process. The existing district and regional plans remain operative until superseded by the provisions of the PAUP as they are made operative.

However, section 86B(3) of the RMA states that a rule in a proposed plan has immediate legal effect from the date of notification if the rule:

- a) protects or relates to water, air, or soil (for soil conservation); or
- b) protects areas of significant indigenous vegetation; or
- c) protects areas of significant habitats of indigenous fauna; or
- d) protects historic heritage; or
- e) provides for or relates to aquaculture activities.

A number of rules in the PAUP have immediate legal effect as at 30 September 2013, and thus must be considered in relation to the proposed works, along with the operative plans. The contaminated soil, groundwater and landfill rules under the PAUP are very similar to those in the ALW Plan, and the permitted activity (PA) soil acceptance criteria in provision H.4.5.2.1.3 are the same as the Schedule 10 levels in the ALW Plan. PAUP rule H.4.5.2.3.1 is further discussed in Section 4.4.

4.2 NES Soil

On 1st January 2012 the NES Soil came into effect. All territorial authorities (district and city councils) are required to give effect to and enforce the requirements of the NES.

Section 4 of the NES sets out the relationship of the regulations with territorial and regional council functions. The NES Soil relates to territorial authority functions (as set out in section 31 of the RMA), but does not apply to regional council functions under section 30 of the RMA. Accordingly, the NES Soil does not relate to the Coastal Marine Area, which falls within regional council jurisdiction.

The policy objective of the NES Soil is to ensure land affected by contaminants in soils is appropriately identified and assessed when soil disturbance and/or land development activities take place and, if necessary, remediated or the contaminant contained to make the land safe for human use.

The NES Soil achieves its policy objective through a mix of allowing (permitting) and controlling (through resource consents) certain activities on land affected or potentially affected by soil contaminants. Under the regulations, land is considered to be actually or potentially contaminated if an activity or industry on the HAIL has been, is, or is more likely than not to have been, undertaken on that land.

The NES Soil provides selected soil guideline values (SGVs) for human health protection for a range of land uses and these SGVs are derived from the NES Soil soil contamination standards (SCSs) for twelve priority contaminants or other referenced guidelines for non-priority contaminants. Nine of the twelve priority contaminants have been assessed as part of this study, the remaining three contaminants, Boron, Pentachlorophenol and Dioxin, were not considered a contaminant of potential concern. The soil laboratory test results have been assessed against the appropriate SGVs in Section 11.

This contaminated land assessment report is considered to meet the requirements of a Detailed Site Investigation (DSI) and demonstrates that the priority contaminants were found to be below the background concentrations.

If a DSI exists and the soil contaminant levels are below background concentrations then the NES does not apply, as covered by NES Regulation 5(9).

4.3 ALW Plan

The ALW Plan contains a number of contaminated land rules, Rules 5.5.40 to 5.5.45, that specify whether earthworks or soil disturbing activities are a Permitted Activity, Controlled Activity, Restricted Discretionary Activity or a Discretionary Activity.

There are two Permitted Activity Rules relevant to the project, Rule 5.5.41 (for soil) and Rule 5.5.57 (for temporary discharge of uncontaminated groundwater).

The are two other Permitted Activity rules related to soil contamination, Rule 5.4.40 is a Permitted Activity rule for trenching, small scale disturbance and intrusive investigations and the criteria require a relatively low soil disturbance volume (<200 m³) and limited duration of excavation work (< 1 month). These criteria will be exceeded by the proposed works and have therefore not been considered further. Rule 5.5.42 is relevant for petroleum underground storage tanks and therefore not relevant to the project.

4.3.1 Rule 5.5.41- Soil and Sediment

Rule 5.5.41 allows for soil contaminant levels to be less than 95% of the Upper Confidence Limit (UCL), as described in the Ministry for the Environment (MfE) document *Contaminated Land Management Guidelines No. 5- Site Investigation and Analysis of Soils* (MfE, 2004) using the greater of (i) or (ii) below:

- i. For in situ soil and material imported and/or deposited onto the land:
 - 1. The criteria specified in Schedule 10 of the ALW Plan. Note, the discharge values have been applied in this report and it is understood that the human health values in Schedule

10 are superseded by the SGVs in the NES. For contaminants not included in Schedule 10:

- 2. The Tier 1 soil acceptance criteria for the current land use or, in the case of a proposed change in land use, the proposed land use for the more stringent of either the protection of human health or sensitive groundwater specified in the MfE document Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (MfE, 1999), of for contaminants not included in Schedule 10 or the Petroleum Hydrocarbon guidelines;
- 3. The soil quality guidelines for the current land use or , in the case of a proposed change in land use, the proposed land use in the Canadian Environmental Quality Guidelines, prepared by the Canadian Council of Ministers of the Environment (CCME, 1991), updated 2002, for the currently zoned land use, or for contaminants not included in Schedule 10, the Petroleum Hydrocarbon guidelines or the CCME guidelines;
- 4. For dieldrin and lindane only, the soil quality guidelines in the MfE document *Identifying, Investigating and Managing Risks Associated with Former Sheep-Dip Sites- A Guide for Local Authorities* (MfE, 2006).
- ii. For in situ soil and material imported and/or deposited onto the land the natural background levels for that soil or material or the relevant background levels specified in the Auckland Regional Council (ARC) Technical Publication (TP) *Background concentrations of inorganic elements in soils from the Auckland region* (TP153) (ARC, 2001).

Rule 5.5.41 also requires that soil or material historically imported shall not contain separate phase liquid contaminants including separate phase hydrocarbons.

It is inferred that where sediment is excavated and disposed off-site onto land it becomes a soil and hence Rule 5.5.41 applies to sediment (for off-site disposal purposes).

4.3.2 Rule 5.5.47- Groundwater

In terms of assessing the contaminants in the groundwater for the project it is considered that Rule 5.5.57 applies:

"The discharge of water from the following is a Permitted Activity:

e) Temporary and permanent discharge of diverted uncontaminated groundwater;"

Uncontaminated groundwater, in terms of its contaminant level is defined in Rule 5.5.58 which states that:

"The activities in Rule 5.5.47 are subject to the following conditions:

c) "The contaminants discharged shall not either by itself or in combination with other contaminants after reasonable mixing exceed the greater of the 95 percent trigger values for freshwater (groundwater) specified in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000), or the natural background level, with the exception ..."

It is understood that with respect to the term 'reasonable mixing' Auckland Council can accept up to ten times (10x) the threshold criteria, i.e. the ANZECC 95% protection trigger level multiplied by ten.

The ecological report, contained in Appendix D, Volume 2 will address the ecological aspects of the sediment quality at the site.

For completeness the sediment laboratory test results have been assessed against the Interim Sediment Quality Guidelines (ISQG)- Low trigger values and ISQG- High trigger values in Section 11 of this report.

4.4 PAUP

4.4.1 Provision H.4.5.2.1.3

In the contaminated land section of the PAUP, provision H.4.5, an activity table is provided for discharge rules under Section 15 of the RMA. The table "specifies the activity status for the discharge of contaminants to land and/or water from containing elevated levels of contaminants."

Within the PAUP table it is considered that the activity described as "Discharges of contaminants from land not used for primary production" is most relevant to the Project works, and the PAUP table classifies this as a Permitted Activity.

Auckland Council manages the potential discharges from a Permitted Activity with a number of controls and the controls applicable to the "Discharges of contaminants from land not used for primary production" are specified in provision H.4.5.2.1.3 of the PAUP and are paraphrased below:

- 1. "For in-situ soil and material imported or deposited onto land, the concentrations of target contaminants, or 95 per cent upper confidence limit of the mean, determined in accordance with 'Contaminated Land Management Guidelines- No. 5- Site Investigation and Analysis of Soils', Ministry for the Environment (2011), must not exceed the greater of a. or b. below:
 - a) For in-situ soil and material imported and/or deposited onto the land
 - i. the criteria specified in Table 1; or for contaminants not listed in Table 1:
 - ii. the tier 1 soil acceptance criteria for the protection of groundwater quality specified in Table 4.20 of the 'Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand', Ministry for the Environment (October 2011); or for contaminants not included in Table 1 or Table 4.20:
 - iii. the soil quality guidelines for the current land use or, in the case of a proposed change in land use, the proposed land use in the 'Canadian Environmental Quality Guidelines', Canadian Council of Ministers of the Environment (2013):
 - iv. for dieldrin and lindane only, the soil guideline values in Table A.5 of the report 'Identifying, Investigating and Managing Risks Associated with Former Sheep Dip Sites: A Guide for Local Authorities', Ministry for the Environment (2006).
 - b) The natural background levels for that soil or material or the relevant background levels specified in Table 2.
- 2. The land and the discharge must not contain separate phase liquid contaminants including separate phase hydrocarbons.

Table 1: Permitted activity soil acceptance criteria

Contaminant	Permitted activity criteria (mg/kg)		
Arsenic	100.0		
Benzo (a) pyrene (equivalent)	2.15		
Cadmium	7.5		
Chromium (total)	400.0		
Copper	325.0		
Total DDT	12.0		
Lead	250.0		
Mercury	0.75		
Nickel	105.0		
Zinc	400.0		

Total DDT includes the sum of DDT, DDD and DDE.

Table 2: Background ranges of trace elements in Auckland soils (Auckland Council TP153, 2001)

Element (total recoverable)	Non-volcanic range	Volcanic range	
Arsenic (As)	0.4 –	12	
Boron (B)	2 – 45	<2 - 260	
Cadmium (Cd)	<0.1 – 0.65		
Chromium (Cr)	2 – 55	3 – 125*	
Copper (Cu)	1 – 45	20 – 90	
Lead (Pb)	<5 – 65*		
Mercury (Hg)	<0.03-	- 0.45	
Nickel (Ni)	0.9 – 35	4 – 320	
Zinc (Zn)	9 – 180	54 – 1160	

Therefore the controls of provision H.4.5.2.1.3 of the PAUP are, in terms of maximum allowable soil contaminant criteria, the same as those specified in Rule 5.5.41 of the ALW Plan (see Section 4.3.1).

4.4.2 Provision H.4.18.2.1.1.2

Provision H.4.18 of the PAUP allows for "...discharges of contaminants onto or into land that are not otherwise covered by the plan, and that are identified as occurring or needing to occur for recognised purposes."

An activity table is provided for provision H.4.18 and the activity described as "discharge of water from ... temporary and permanent discharge of diverted uncontaminated groundwater.." has a Permitted Activity status.

The controls relevant to contaminant criteria relevant to a permitted activity are specified in provision H.4.18.2.1.1.2 of the PAUP and are paraphrased below:

"The contaminant discharged must not either by itself or in combination with other contaminants after reasonable mixing exceed the greater of the 95 percent trigger values for freshwater (groundwater) specified in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000), or the natural background level".

Therefore the controls of provision H.4.18.2.1.1.2 of the PAUP are the same as those specified in Rule 5.5.58(c) of the ALW Plan (see Section 4.3.2).

4.5 Adopted Site Assessment Criteria

4.5.1 Soil and Sediment: Site Assessment Criteria

Based on the NES Soil, ALW Plan and PAUP soil guideline values described above, the appropriate soil and sediment contamination values used to assess the site are presented in Table 1 below. The ANZECC ISQG-Low and ISQG-High concentrations have been presented for comparative purposes only.

Table 1: Soil and Sediment Contamination Values (all in mg/kg dry weight)

Parameter (mg/kg dry weight)	ALW Plan Permitted Activity Limits ²		SGVs Commercial/industrial outdoor	TP 153 ⁸ (cleanfill criteria)		ANZECC Sediment Quality ⁹	
weight	Schedule 10	Other discharge	worker/maintenance ¹	Non- volcanic	Volcanic	ISQG-Low	ISQG-High
Arsenic	100	-	70	12	12	20	70
Cadmium	7.5	-	1300 (at pH =5)	0.65	0.65	1.5	10
Chromium	400	-	6300	55	125	80	370
Copper	325	-	>10,000	45	90	65	270
Lead	250	-	3300	65	65	50	220
Mercury	0.75	-	4200 ⁷	0.45	0.45	0.15	1
Nickel	105	-	1500 ³	35	320	21	52
Zinc	400	-	23000 ³	180	1160	200	410
Naphthalene	-	69 ⁴	-	-	-	0.16	2.1
BaP (equiv)	2.15		35	-	-	0.43	1.6
Pyrene	-	$1.3^4 - 1600^4$	-	-	-	0.665	2.6
C7 – C9	-	$710^4 - 2700^4$	-	-	-	-	-
C10 – C14	-	560 ⁴ – 1500 ⁴	-	-	-	-	-
C15 – C36	-	>20000 ⁴	-	-	-	-	-
DDT- total	0.7^{6}	-	1000	-	-	0.0016	0.046
Dieldrin	-	190 ⁵	160	-	-	0.00002	0.008
Lindane		14,000 ⁵	-	-	-	0.00032	0.001
Tributyltin	-	-	-	-	-	0.005	0.07

Notes:

¹ MfE, 2011, Tables 54 & 55, Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health.

4.5.2 Groundwater: Site Assessment Criteria

The appropriate groundwater guideline values are presented in Table 2 below and were used to assess groundwater at the site. These values are based on Rules 5.5.57(e) and 5.5.58 (c) of the ALW Plan, and controls of provision H.4.18.2.1.1.2 of the PAUP, see Section 4.3.2. We note that the marine values are presented for comparative purposes as Rule 5.5.42A (i) refers to freshwater trigger level, however, the site is located in the CMA and the groundwater is likely to discharge to the marine environment and therefore the marine values are considered.

Table 2: Guideline values for selected groundwater contaminants.

Parameter	95% level of protection of	of species' ANZECC (2000)	Adopted Groundwater Site Assessment Criteria		
	Freshwater	Marine			
Arsenic	0.024	ID ²	0.240		
Cadmium	0.0002	0.0055	0.055		
Chromium	0.001	0.0044	0.044		
Copper	0.0014	0.0013	0.013		
Lead	0.0034	0.0044	0.044		
Mercury	0.0006	0.0004	0.004		
Nickel	0.011	0.070	0.7		
Zinc	0.008	0.015	0.150		
Naphthalene	0.016	0.070	0.7		
BaP (equiv)	0.0002 ³	ID	0.002		
Pyrene	-	-	-		
C7 – C9	-	-	-		
C10 – C14	-	-	-		
C15 – C36	-	-	-		

Notes:

² ALW Plan (Operative in Part, 21 October 2010). It may be inferred from Note 3 of Schedule 10 that where the heavy metal limit for human health is not shown then the limit is equal or higher than the discharge limit.

³ United States Environmental Protection Agency (USEPA), Human Health Medium – Regional Screening Levels (RSL, May 2013) – International risk – based SGVs for residential land use, non-cancer endpoint, all pathways.

⁴ MfE, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) Module 4 – Tier 1 Soil Screening Criteria Residential land use, all pathways, for silty clay soil with surface (<1m) depth of contamination (Table 4.10) and for the protection of groundwater quality for potable use (Table 4.20) with surface contamination (<1 m) and depth to groundwater as 4 m.

⁵ MfE, Identifying, Investigating and Managing Risks Associated with Former Sheep-dip Sites, November 2006 – SGVs for human health for commercial/industrial (unpaved) land use (Table 4).

⁶ Note 2 of Schedule 10 states that this value applies to the redevelopment phase. Upon completion of the land development the PA limit is 12 mg/kg, which is the same value as in the Proposed Auckland Unitary Plan (PAUP).

⁷ Inorganic mercury compounds.

⁸ ARC (2001), Background concentrations of inorganic elements in soils from the Auckland region, TP 153

⁹ ANZECC (2000), Table 3.5.1- ISQG, Low trigger values and High trigger values.

¹ All units are in mg/L (=g/m³, as reported by Hill Laboratories, see Appendix E).

² ID means insufficient data to derive a reliable trigger value.

 $^{^3}$ A low reliability trigger value of 0.2 µg/L was derived for benzo[a]pyrene using the statistical distribution method (95% protection). This chemical has the potential to bio-accumulate but this has not been accounted for in this figure. Alternative protection levels were 99% 0.1 µg/L, 90% 0.4 µg/L, 80% 0.7 µg/L. The 99% figure is recommended if no data are available on bioaccumulation effects at specific sites. This is applicable to both fresh and marine waters and should only be used as an indicative interim working level. Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 2 Aquatic Ecosystems - Rationale and Background Information (Chapter 8) October 2000.

5 HISTORICAL AERIAL PHOTOGRAPH REVIEW

A review of historical aerial photography was carried out to determine current and past land uses that had the potential to cause soil, sediment or groundwater contamination. The following two sources were used:

- a) Council Geographical Information System (GIS), using their publicly available website.
- b) The aerial photographic archive held by Tonkin & Taylor Ltd (T&T) at their offices in Newmarket, Auckland.

The historical aerial photographs reviewed covered the period 1940, 1950, 1960, 1970, 1980, 1990 and 2000. The review was conducted for the whole of Watercare's future NH2 Watermain project and therefore includes the Project site.

Table 3 provides a summary of the historical aerial photograph review. Appendix A provides a detailed review of the historical aerial photographs.

Table 3: Summary of Historical Aerial Photograph Review

Section	Description			
Fred Taylor Road to Greenhithe Bridge	All roads for Fred Taylor/Hobsonville road exist in 1950s. Surrounded by farmland and mixed agricultural uses. Port facilities to the south of proposed Greenhithe bridge area in 1970s. Greenhithe bridge built by 1980s. Residential development increasing over time, increasing mostly after 1980s.			
	In the 1920s Hobsonville peninsula became an airfield and was occupied by the Royal New Zealand Air Force (RNZAF), see also Section 3.1 for a brief history of the air base. The historical aerial photographs show that buildings such as aircraft hangers and the grass airfield were located at least 100 m east to south-east from the preferred route, located near the western portion of Buckley Ave. Therefore there is low risk that former RNZAF activities have contaminated the ground near the preferred route.			
	A large part of Hobsonville peninsula was used by the Ministry of Defence for housing, especially near the end (eastern end) of Buckley Ave. The preferred route only uses a relatively small portion of the western side of Buckley Ave and there is no reason to suspect that HAIL activities were carried out in the western portion of Buckley Ave.			
Greenhithe to Tauhinus Road, Pounamu Avenue, Sunny View Road, Kyle Road and Bush Road	Most roads exists in 1950's, land use is predominantly rural residential with some farmland, residential development increasing over time, particularly from 1980s. Sunnyview Road built by 1970s, Pounamu Road constructed during 1990s.			
Greenhithe to Bush Road (Upper Harbour Drive)	Albany Highway exists in 1950s. Upper harbour highway is just through farmland and bush, built in 2000s. Residential development increases particularly from 1990s.			

5.1 Brief History of Hobsonville Airbase

In 1925 an airfield was established on the Hobsonville land and the Royal New Zealand Air Force (RNZAF) moved to the base in 1928. It occupied a flying field and seaplane slipway and established itself as a RNZAF primary flying boat base until 1967.

In 1965 the RNZAF Base Hobsonville and nearby RNZAF Base Whenuapai merge as RNZAF Base Auckland and Hobsonville became base primarily for helicopters.

In 2002 the Government decommissioned Hobsonville and the remaining operation moved to Ohakea.

Table 3 and the brief history of Hobsonville Airbase do not indicate that activities or industries presented on the Hazardous Activities and Industries List (HAIL) are located within the Project site. A copy of the HAIL is presented in Appendix B.

We note that item H of the HAIL states that:

"Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment".

It is possible that the sediments located within the causeway works area, forming part of the overall Project site area, have become contaminated from run-off from surrounding land uses. Therefore the sediment contaminant levels have been tested as part of this report, primarily for off-site disposal options.

6 COUNCIL SITE CONTAMINATION ENQUIRY

A site contamination enquiry was lodged with Council on 26 February 2014. The site contamination enquiry was for the whole of Watercare's future NH2 Watermain project and therefore includes the Project site.

Council's response to the site contamination enquiry is contained in Appendix C. It shows that there are no pollution incident files or resource consents, such as contaminated site discharge consents, issued at or near the Project site.

There are no groundwater users within 500 m of the the Project site. The site is located over the Kumeu Waitemata Aquifer, as identified on Map Series 2, Map 7 of the ALW Plan planning maps, and this is a High Use Aquifer Management Area. However, this is a deep aquifer and the shallow groundwater that may be affected by the proposed valve chamber excavation work, is likely to be perched groundwater and the shallow perched groundwater quality has been assessed as part of this study (see Section 11.3).

In addition to the site contamination enquiry Council's Environmental Control, Licensing & Compliance Services (ECLCS) was also contacted in the period 24 February to 11 March 2014 to assess if there are HAIL sites located on or immediately adjacent to the whole NH2 Watermain project.

No specific information was received from ECLCS in this period, however, considering that both the historical aerial photograph review and the site contamination enquiry did not indicate that HAIL activities were or are carried out on the Project site, it is considered reasonable to assume that Council ECLCS also does not classify the Project site as a HAIL site.

7 POTENTIAL FOR CONTAMINATION

The potential for soil and groundwater contamination is considered low since the desk study review indicate that no activities or site uses listed on the HAIL were carried out on or within the Project site.

Sediments located in the Project site have the potential to be contaminated from run-off from surrounding land uses, as previously discussed in Section 5.1. The likely contaminants are heavy metals, organic hydrocarbons and pesticides.

The effects of potential sediment contamination are:

- a) Environmental effects, in terms of ecology.
- b) Human health effects in terms of construction workers and environmental effects in terms of on-site reuse in mudcrete or where off-site disposal to land is required (when sediment becomes a soil).

The ecological effects of sediment contamination are presented in the Technical Report D- Ecology, Greenhithe Bridge Watermain Duplication and Causeway, Volume 2.

In order to enable construction work to be undertaken in an efficient manner with minimal delays to the construction programme testing of the sediment was undertaken to determine the existing sediment contaminant levels and to determine sediment spoil disposal options. This was carried out as Phase 2 of the scope of work, see Section 3.4, and is further discussed in Section 8 below.

Similarly soil and groundwater sampling and testing was carried out at the proposed jacking and receiving pits (west end of Project area) and proposed pit for the east end valve chamber (east end of Project area) as this would enable the future site contractor with the preparation of site specific Health & Safety Plans (to protect excavation workers) and assist with soil and groundwater disposal options during the construction works. This work was also carried out as the Phase 2 scope of work and is further discussed in Section 8 below.

8 SITE INVESTIGATION WORKS

8.1 Objective

The objective of the site investigation works was to assess the soil, groundwater and sediment contaminant levels in the areas of the Project site that would be disturbed during the earthworks. The data obtained from the site investigation works, and field observations in terms of visual or olfactory evidence of ground contamination, would be used to establish the implications of the proposed works.

8.2 Sampling Methodology: Soil, Sediment and Groundwater

Watercare engaged Jacobs to prepare a sampling methodology for soil, groundwater and sediment sampling in April 2014. The sampling methodology provided Watercare's site investigation contractor Opus International Consultants Ltd (Opus) with the proposed sample locations and method of obtaining samples. A copy of the sampling methodology is presented in Appendix D.

8.3 Fieldwork

The fieldwork was undertaken by Opus in the period May to June 2014 in accordance with the sampling methodology.

The locations of the soil, sediment and groundwater samples obtained within the site are presented in Table 1 of the report *Environmental Sampling and Testing Report, NH2 Watermain, Greenhithe and Stream Crossings*, reference GS14/091 (Opus, 2014). Relevant pages of this report are contained within Appendix E. We note that the fieldwork included sampling at a number of stream crossings located outside the Project site but forming part of the remainder of the whole of Watercare's future NH2 Watermain project and these pages have been removed from the Opus report.

All samples were couriered to R J Hills Laboratory Ltd (Hills Laboratory) by Opus using appropriate contaminated land documentation such as chain of custody and request for analysis forms.

Copies of the borehole logs of the environmental sampling locations are contained within Appendix F (note, these borehole logs are also contained within Appendix B of the Opus Geotechnical Factual Report GS14/089).

None of the boreholes recorded visual or olfactory evidence of ground contamination.

8.4 Additional Fieldwork

An additional three sediment samples were taken in the area of the proposed construction platform of the NI project on 21 November 2014. The location of the three sediment samples is shown on Drawing 2010674.004 contained in Appendix J. The approximate location of the proposed construction platform is also shown on Drawings 2010673.851 and 2010674.001. Volume 3 Drawings- Greenhithe Bridge Watermain Duplication and Causeway also provides drawings showing the location of the Northern Interceptor Project Proposed Construction Platform.

The three sediment samples were obtained by staff from T&T and no visual or olfactory evidence of ground contamination was observed. The sediment samples were couriered to Hill Laboratories by T&T using appropriate contaminated land documentation such as chain of custody and request for analysis forms. The three sediment samples were tested for similar contaminants as those obtained in the period May to June 2014 (see Section 8.3).

9 LABORATORY TESTING

The laboratory testing comprised the testing of soil, sediment and groundwater samples for the following parameters:

- a) Suite of heavy metals: Arsenic, Cadmium, Chromium (total), Copper, Lead, Nickel, Zinc and Mercury.
- b) Total Petroleum Hydrocarbons (TPH).
- c) Polycyclic Aromatic Hydrocarbons (PaH).
- d) Organochlorine Pesticides (OCP).
- e) Tributyl Tin (TBT) (sediment samples only).
- f) Total Organic Carbon (TOC) (sediment samples only).
- g) For ecological report- the heavy metals extractable Copper, Lead and Zinc, as per Technical Publication TP 168, revised edition, *Blueprint for Monitoring Urban Receiving Environments* (ARC, 2004).

For the May to June fieldwork the samples tested and laboratory testing regime is presented in Table 3 of the environmental sampling and testing report contained in Appendix E.

For the additional fieldwork the laboratory test results are presented in Appendix J.

For the Project site a total of fourteen sediment samples were tested (including one duplicate), seven soil samples and one groundwater sample.

An assessment of the test results is presented in Section 11 of this report.

10 OFF-SITE DISPOSAL OF SOIL AND SEDIMENT

Off-site disposal of soil and sediment is typically at one of three facilities:

- a) A licensed cleanfill site.
- b) A licensed managed fill site.
- c) A licensed solid waste landfill.

Disposal at a cleanfill site requires soil contaminant levels to be below local background levels of inorganic contaminants and have no organic or hydrocarbon contamination. The local background levels used in this report are those presented in the ARC TP 153 (ARC, 2001), previously discussed in Section 4.4.1. Slightly contaminated soils, for example, soils with contaminant levels above background levels but typically below ALW-Plan Schedule 10 criteria, may be disposed of at a licensed managed fill if the site soil/sediment contaminant levels meet the resource consent criteria that the licensed managed fill site operates under. There are several licensed managed fill sites within the greater Auckland area including Puketutu Island, Greenmount, Three Kings and Whangarata Quarry at Ridge Road in Pokeno. The Redvale landfill, a licensed solid waste landfill, can also accept managed fill at a discounted rate.

Typical managed fill criteria for a range of soil contaminants are listed in Table 4 below, however, it is recommended that the future contractor contacts the relevant licensed managed fill operator to check what their managed fill acceptance criteria are.

Table 4: Range of Typical Managed Fill Contaminant Acceptance Criteria

Parameter	Concentration (mg/kg)		
Arsenic	30 - 100		
Cadmium	0.65 - 10		
Chromium (total)	125 - 400		
Copper	90 - 325		
Mercury	0.45 – 0.75		
Nickel	105 – 320		
Lead	65 – 250		
Zinc	400 - 1160		
TPH: C7-C9	20 - 300		
TPH: C10-C14	5 - 500		
TPH: C15-C36	500 - 10,000		
BaP(equiv)	0.1 - 25		
DDT (total)	0.35 - 12		

Fill not accepted by a licensed managed fill site must be disposed of at a licensed solid waste landfill such as the Redvale landfill, Hampton Downs landfill or the Whitford landfill. A licensed solid waste landfill also operates under resource consent criteria stating maximum allowable soil contaminant concentrations and/or maximum leachable contaminant concentrations, typically specified via a Toxic Characteristic Leaching Procedure (TCLP) test. If the soil contaminant concentrations exceed the solid waste landfill TCLP criteria the soil may require treatment such as cement or lime stabilisation prior to acceptance by a licensed solid waste landfill.

It is recommended that the contractor contacts the appropriate off-site disposal site prior to earthworks starting at the site. The soil and sediment laboratory test results presented in the report may assist the contractor in obtaining the appropriate off-site soil and sediment disposal location(s).

11 ASSESSMENT OF SITE TEST RESULTS

The assessment of the site test results has been made against national and Auckland regulatory criteria and against the off-site disposal criteria, for soil, sediment and groundwater. This is discussed Sections 11.1 to 11.3 below.

11.1 Soil Contamination Assessment

The table in Appendix G provides an assessment of the seven soil samples against the SGVs from the NES, the Schedule 10 criteria of the ALW Plan and the TP 153 Auckland cleanfill criteria.

All TPH, PaH and OCP test results were below the laboratory limit of detection (LOD) testing (except for pyrene at three samples where it was at the LOD).

All heavy metals were below the SGVs and Schedule 10 criteria. Therefore no resource consents from Council under the ALW Plan or the NES Soil are required.

All heavy metals were also below the TP153 non-volcanic criteria. Therefore the spoil from the proposed valve chamber excavation locations can be disposed off-site as cleanfill, or it can be reused on-site.

11.2 Sediment Contamination Assessment

The table in Appendix H provides an assessment of the fourteen sediment samples against the Schedule 10 criteria of the ALW Plan, TP 153 Auckland background soil concentration (typically used as cleanfill criteria) and the ANZECC sediment quality guidelines.

All TPH, OCP and TBT test results were below the laboratory LOD.

Benzo(a)pyrene (BaP), one of the PaHs, was reported in four out of fourteen samples, the highest at sample location HA214a, where the Benzo(a)pyrene (BaP) equivalent concentration was 0.27 mg/kg. The HA214a BaP concentration of 0.27 mg/kg is well below the NES-SGV of 35 mg/kg, also below the ALW Plan Schedule 10 criteria of 2.15 mg/kg and also below the ANZECC ISQG-Low value of 0.43 mg/kg. Another PaH parameter, Phenanthrene, was slightly elevated in two sediment samples (0.33 mg/kg and 0.25 mg/kg) when assessed against the ISQG-Low value (0.24 mg/kg) but both samples were well below the ISQG-High value (1.5 mg/kg).

All heavy metals were below the Schedule 10 criteria.

All heavy metals, PaH and OCP test results were below the Schedule 10 criteria (and therefore also below the criteria listed in provision H.4.5.2.1.3 of the PAUP, see Section 4.4).

Arsenic was slightly elevated in eight out of fourteen sediment samples when compared to the Auckland background values for non-volcanic (12 mg/kg). In three of the eight samples Arsenic exceeded the ANZECC ISQG-Low criteria.

The 95% UCL of the eleven Arsenic sediment test results is 19.98 mg/kg, say 20 mg/kg (see Appendix I), above the 12 mg/kg concentration of Arsenic in Auckland background soils (for volcanic and non-volcanic soils). Therefore if the sediment requires off-site disposal during future earthworks at the site, it should <u>not</u> be disposed of at a licensed cleanfill site, but to a licensed managed fill site or a licensed solid waste landfill.

Since the 95% UCL of Arsenic is 20 mg/kg, i.e. the same as the ISQG-Low value, it is considered that the sediment can remain at its current location, or be reused on-site using, for example, mudcrete.

At one of the eleven sample locations Mercury was slightly elevated (0.20 mg/kg), compared to the ISQG-Low criteria of 0.15 mg/kg, but below the Auckland background value for Mercury (0.45 mg/kg).

The 95% UCL of Mercury is 0.12 mg/kg (see Appendix I) which is less than the ISQG-Low of 0.15 mg/kg. It is considered that the sediment can remain at its current location, or be reused on-site using, for example, mudcrete.

11.3 Groundwater Contamination Assessment

The groundwater test results from borehole BH201, located near the proposed receiving pit located south of SH18, see site plan contained in Appendix E, have been presented in Table 5, together with the assessment criteria from Section 9.4.2.

Table 5 shows that all test results are less than the laboratory LOD and less than the PA criteria for Freshwater and less than the PA criteria for Marine water. Therefore no resource consent is required under the ALW Plan.

If it is required to temporarily remove groundwater during the construction of the receiving pit located south of SH18, it may be discharged to the stormwater system.

Table 5: Groundwater Test Results and Guideline Values for Groundwater Contaminants.

Parameter	Groundwater Test Results, BH201	The state of the s		Adopted Groundwater Site Assessment Criteria	
		Freshwater	Marine		
Arsenic	<0.011	0.024	ID ²	0.240	
Cadmium	<0.00053	0.0002	0.0055	0.055	
Chromium	<0.0053	0.001	0.0044	0.044	
Copper	<0.0053	0.0014	0.0013	0.013	
Lead	<0.0011	0.0034	0.0044	0.044	
Mercury	<0.0008	0.0006	0.0004	0.004	
Nickel	<0.0053	0.011	0.070	0.7	
Zinc	<0.011	0.008	0.015	0.150	
Naphthalene	<0.0005	0.016	0.070	0.7	
BaP (equiv)	<0.00010	0.0002 ³	ID	0.002	
Pyrene	<0.0002	-	-	-	
C7 – C9	<0.10	-	-	-	
C10 - C14	<0.2	-	-	-	
C15 – C36	<0.4	-	=	-	

Notes:

¹ All units are in mg/L (=g/m³, as reported by Hill Laboratories, see Appendix E).

² ID means insufficient data to derive a reliable trigger value.

 $^{^3}$ A low reliability trigger value of 0.2 μ g/L was derived for benzo[a]pyrene using the statistical distribution method (95% protection). This chemical has the potential to bio-accumulate but this has not been accounted for in this figure. Alternative protection levels were 99% 0.1 μ g/L, 90% 0.4 μ g/L, 80% 0.7 μ g/L. The 99% figure is recommended if no data are available on bioaccumulation effects at specific sites. This is applicable to both fresh and marine waters and should only be used as an

indicative interim working level. Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 2 Aquatic Ecosystems - Rationale and Background Information (Chapter 8) October 2000.

12 ASSESSMENT OF ENVIRONMENTAL EFFECTS

12.1 Conceptual Model Development

A typical conceptual model for soil and groundwater contamination includes three items and their linkages:

- a) Sources.
- b) Pathways.
- c) Receptors.

12.2 Sources

The conceptual site model source can be classified into one of three groups:

- a) Known contamination.
- b) Unknown contamination.
- c) Future Project construction activity related contamination.

Known contamination areas have not been identified for the Project site, both in terms of the desktop study (see Sections 5 and 6) and the actual soil, sediment and groundwater testing at the site (see Section 11).

Unknown contamination areas are those that may be discovered during future excavation works associated with the Project, both in trench excavation and micro-tunnelling. Unknown contamination will be addressed in the CMP, including, as a minimum:

- a) Guidance for site staff on how to recognise ground contamination during excavation works;
- b) Procedures on how to deal with unforeseen ground contamination such as discovery protocols;
- c) Potential ground contamination resulting from construction activities such as inadvertent spillages of fuel while refuelling construction plant and equipment.

12.3 Pathways

Pathways are the routes that move contaminants from the source to the receptors. Exposure routes are also considered pathways.

Contaminant pathways that have been considered in the preparation of this report are:

- a) Ingestion of soil.
- b) Dermal contact with soil.
- c) Inhalation of vapours and dust.
- d) Groundwater movement.

- e) Overland flow of contaminated water.
- f) Movement of contaminated sediments.

12.4 Receptors

Receptors are the elements that could be adversely affected by the contaminants and include:

- a) People, in particular excavation and construction workers for the Project.
- b) Ecological receptors, such as flora and fauna.
- c) Groundwater.
- d) Surface water.
- e) Land quality.

12.5 Conclusion: Assessment of Human Health and Environmental Effects

The linkages between source, target and receptor are important in assessing the ground contamination risk during the construction of the proposed pipeline, both in terms of human health and environmental risks.

Soil, sediment and groundwater testing have shown that the potential risk to the receptors, in particular the construction workers, general public and future site users during and following the proposed works will be less than minor.

A conservative approach to manage unforeseen/unknown ground contamination is to use protocols that are designed to avoid, mitigate and remedy the potential for adverse effects on the environment, for example, the erosion and sediment management practices and the CMP. The CMP will be prepared will be once the contractor has been appointed and the CMP will be submitted to Council prior to construction as discussed in Section 2.3.4 of the AEE.

It is therefore considered that potential adverse effects on the environment arising from unforeseen/unknown ground contamination at the Project site can be avoided, mitigated and remedied by ensuring that the contractor adheres to the protocols listed in the CMP.

13 CONCLUSIONS

13.1 Conclusions

13.1.1 Statutory Assessment

- a) No activity or industry listed on the HAIL was identified within the Project site and priority contaminants are shown to be below background levels. It is therefore considered that the requirements of the NES do not apply to the Project site.
- b) The Project site's soil, sediment and groundwater contaminant levels have been assessed against the requirements of the contaminated land rules of the ALW Plan and the PAUP.

13.1.2 Sediment Contamination Assessment

- c) The DSI shows that the sediment contaminant levels are:
 - Below the laboratory level of detection for organic parameters except for minor amounts of PaHs.
 - ii. Below the Auckland background concentrations for inorganic soils except for Arsenic.
 - iii. Below the soil contaminant criteria specified in Rule 5.5.41 of the ALW Plan and below the soil contaminant criteria specified in provision H.4.5.2.1.3 of the PAUP.
- d) Off-site sediment disposal may be at a licensed managed fill site or licensed solid waste landfill, i.e. not to a licensed cleanfill site. On-site disposal of the sediment or reuse of the sediment in, for example, mudcrete is permitted, from a contamination perspective.
- e) The sediment contamination levels are below the Interim Sediment Quality Guidelines- Low Trigger Values (ANZECC, 2000), when using the 95% Upper Confidence Limit of the test results.
- f) An ecological assessment for the Project is provided in Technical Report D- Ecology, Greenhithe Bridge Watermain Duplication and Causeway, Volume 2.

13.1.3 Soil Contamination Assessment

- g) No resource consent is required under the ALW Plan since the requirements of Rule 5.5.41 are met, i.e. the soil contaminant levels are below the Schedule 10 contaminant criteria and other criteria referenced in Rule 5.5.41. Equally no resource consent in required under provision H.4.5.2.1.3 of the PAUP since the Schedule 10 criteria are the same as those listed in Table 1 of provision H.4.5.2.1.3, see Section 4.4.
- h) The soil contaminant levels meet the Auckland background soil quality for non-volcanic soils and therefore spoil can be removed off-site to a licensed cleanfill site, if required. Equally the spoil can be reused on-site.

13.1.4 Groundwater

i) No resource consent is required under the ALW Plan since the requirements of Rules 5.5.57(e) and 5.5.58(c) are met, i.e. the discharge of groundwater contaminant levels, after

reasonable mixing, are below the ANZECC (2000) Freshwater criteria for 95% level of protection of species. No resource consent is required under the PAUP since the requirements of provision H.4.18.2.1.1.2 are met.

j) If temporary groundwater disposal is required during construction of the proposed valve chambers it may be disposed of as stormwater.

13.1.5 Assessment of Effects: Potential Soil, Sediment and Groundwater Contamination

- k) It is considered that the potential soil, sediment and groundwater contamination effects related to the construction, operation and maintenance of the Project are less than minor.
- I) It is considered that potential adverse effects on the environment arising from unforeseen/unknown ground contamination at the Project site can be avoided, mitigated and remedied by ensuring that the contractor adheres to the protocols listed in a Project CMP. The CMP will be prepared once the contractor has been appointed and the CMP will be submitted to Council prior to construction as discussed in Section 2.3.4 of the AEE.

14 LIMITATIONS

The sole purpose of this report is to present the findings of a Soil, Sediment and Groundwater Contamination Assessment carried out by Jacobs for the Client in connection with the Greenhithe Bridge Watermain Duplication and Causeway project. This report was produced in accordance with and is limited to the scope of services set out in the contract between Jacobs and the Client (Watercare Services Limited). That scope of services, as described in this report, was developed with the Client.

Sampling techniques, by definition, cannot determine the conditions between the sample points and so this report cannot be taken to be a full representation of the sub-surface conditions. This report only provides an indication of the likely sub surface conditions.

In preparing this report, Jacobs has relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, Jacobs's Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

15 REFERENCES

References that were considered in the preparation of the AEE were:

- a) MfE, 2011, Contaminated Land Management Guidelines No. 5, Site Investigation and Analysis of Soils, Revised 2011, First published February 2004, Publication reference ME 1073.
- b) Opus, 2014a, Environmental Sampling & Testing Report- NH2 Watermain Greenhithe and Stream Crossings, for Watercare Services Ltd, August 2014, reference GS14/091.
- c) Opus, 2014b, *Geotechnical Factual Report, NH2 Advanced Works*, for Watercare Services Ltd, August 2014, reference GS14/089.
- d) Jacobs (2014), Sampling Methodology- Ground Contamination- North Harbour No. 2 Watermain, by Jacobs/SKM, for Watercare Services Ltd, revision 1 final, 05 May 2014, ref. AE04521.
- e) Jacobs/URS (2014), *Preliminary Design Report- Greenhithe Bridge Watermain Duplication*, draft final- October 2014, for Watercare Services Ltd.

16 ABBREVIATIONS

AC: Auckland Council

AEE: Assessment of Environmental Effects

• ALW Plan: Auckland Council Regional Plan: Air, Land & Water

 ANZECC: Australian and New Zealand Guidelines for Fresh and Marine Water Quality Guidelines (2000 version)

ARC: Auckland Regional Council (now AC)

BMP: Best Management Practices

CLS: Concrete lined steel

CMP: Construction Management Plan

DSI: Detailed Site Investigation

GBWD: Greenhithe Bridge Watermain Duplication

GIS: Geographical Information System

HAIL: Hazardous Activities and Industries List

HM: Heavy Metals

ISQG: Interim Sediment Quality Guidelines (as per ANZECC)

Jacobs: Jacobs New Zealand Ltd

km: kilometre

• ECLCS: Environmental Control, Licensing & Compliance Services

LOD: Limit of Detection (analytical testing)

• m: metre

MfE: Ministry for the Environment

mm: millimetre

 NES: Resource Management (National Environmental Standard for Assessing & Managing Contaminants in Soil to Protect Human Health) Regulations 2011

NH2: North Harbour No. 2 (watermain)

NI: Northern Interceptor

• no.: number

• OCP: Organochlorine Pesticides

Opus: Opus International Consultants Ltd

PA: Permitted Activity

• PaH Polycyclic Aromatic Hydrocarbons

• PAUP: Proposed Auckland Unitary Plan

• PE: polyethylene

• PSI: Preliminary Site Investigation

• RMA: Resource Management Act

RNZAF: Royal New Zealand Air Force

• SCS: Soil Contaminant Standard

• SGV: Soil Guideline Value

• SKM: Sinclair Knight Merz Ltd (now part of Jacobs)

T&T: Tonkin & Taylor Ltd

• TBT: Tributyl Tin

TCLP: Toxic Characteristic Leaching Procedure

• TOC: Total Organic Carbon

• TP: Technical Publication

• TPH: Total Petroleum Hydrocarbons

• UCL: Upper Confidence Limit (as per MfE Guideline No. 5, 2004)

URS: URS New Zealand Ltd

• Watercare: Watercare Services Ltd

APPENDIX A HISTORICAL AERIAL PHOTOGRAPH REVIEW

no. Section	Decade	notes	additional information
4 Fred Taylor to Greenhithe bridge 4 Fred Taylor to Greenhithe bridge		O no photo O road exists, surrounded by mixed agriculture and farming. Alternate route through motorway is farmland. No bridge. A large part of Hobsonville peninsula was used by the Ministry of Defence for housing, especially near the end (eastern end) of Buckley Ave. The preferred route only uses a relatively small portion of the western side of Buckley Ave and there is no reason to suspect that HAIL activities were carried out in the western portion of Buckley Ave.	photos from 1959
4 Fred Taylor to Greenhithe bridge	1960	O no notes	
4 Fred Taylor to Greenhithe bridge	1970	o still farmland on alternate routes. Port and possibly factories south of the Greenhithe bridge. Hobsonville road exists. Some houses have been buil ton hobsonville road/Brigham creek. New circular building near Brigham Creek	run 4598 1972
4 Fred Taylor to Greenhithe bridge	1980	O no real changes, more residentual development on hobsonville road. Greenhithe bridge exists	run 5783 1981
4 Fred Taylor to Greenhithe bridge	1990	O no notes	
4 Fred Taylor to Greenhithe bridge	2000	more houses. Motorway for alternate route built lates 2000s	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1940	O no photo	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1950	O no bridge. Pounapu road doesn't exist - pipeline corsses reserve/farmland. Other roads exist. Photo ends at kyle road. land use is rural residential	photos from 1959
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1960	O no notes	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1970	O no Pounamu Road, farmland. Sunnyview road now existis	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1980	O greenhithe bridge exists. No kyle/orwell road exists and crosses farmland, no structures. Kyle road east exists	photo SN 5783
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1990	O kyle road exists. Pounamu road not yet fully constructed	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	2000	O new subdivisions, more housing development	
6 Greenhithe to Bush Road (upper harbour Dr)	1940	O no photo	
6 Greenhithe to Bush Road (upper harbour Dr)	1950	O road exists mostly through reserve and some farm land. Albany highway exists	photos from 1959
6 Greenhithe to Bush Road (upper harbour Dr)	1960	O no notes	
6 Greenhithe to Bush Road (upper harbour Dr)	1970	all reserve bush and same farm land around roads. Concrete pad east of William pitcher place - to be checked	run 4598/7 1972
6 Greenhithe to Bush Road (upper harbour Dr)	1980	Concrete pad east of William pitcher place has building on it	SN5783
6 Greenhithe to Bush Road (upper harbour Dr)	1990	O more housing development in the area	
6 Greenhithe to Bush Road (upper harbour Dr)	2000	O Upper harbour highawy built.	

APPENDIX B HAZARDOUS ACTIVITIES AND INDUSTRIES LIST

Hazardous Activities and Industries List (HAIL)

October 2011

A Chemical manufacture, application and bulk storage

- 1. Agrichemicals including commercial premises used by spray contractors for filling, storing or washing out tanks for agrichemical application
- 2. Chemical manufacture, formulation or bulk storage
- 3. Commercial analytical laboratory sites
- 4. Corrosives including formulation or bulk storage
- 5. Dry-cleaning plants including dry-cleaning premises or the bulk storage of dry-cleaning solvents
- 6. Fertiliser manufacture or bulk storage
- 7. Gasworks including the manufacture of gas from coal or oil feedstocks
- 8. Livestock dip or spray race operations
- 9. Paint manufacture or formulation (excluding retail paint stores)
- 10. Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds
- 11. Pest control including the premises of commercial pest control operators or any authorities that carry out pest control where bulk storage or preparation of pesticide occurs, including preparation of poisoned baits or filling or washing of tanks for pesticide application
- 12. Pesticide manufacture (including animal poisons, insecticides, fungicides or herbicides) including the commercial manufacturing, blending, mixing or formulating of pesticides
- 13. Petroleum or petrochemical industries including a petroleum depot, terminal, blending plant or refinery, or facilities for recovery, reprocessing or recycling petroleum-based materials, or bulk storage of petroleum or petrochemicals above or below ground
- 14. Pharmaceutical manufacture including the commercial manufacture, blending, mixing or formulation of pharmaceuticals, including animal remedies or the manufacturing of illicit drugs with the potential for environmental discharges
- 15. Printing including commercial printing using metal type, inks, dyes, or solvents (excluding photocopy shops)
- 16. Skin or wool processing including a tannery or fellmongery, or any other commercial facility for hide curing, drying, scouring or finishing or storing wool or leather products
- 17. Storage tanks or drums for fuel, chemicals or liquid waste
- 18. Wood treatment or preservation including the commercial use of anti-sapstain chemicals during milling, or bulk storage of treated timber outside

B Electrical and electronic works, power generation and transmission

1. Batteries including the commercial assembling, disassembling, manufacturing or recycling of batteries (but excluding retail battery stores)

- 2. Electrical transformers including the manufacturing, repairing or disposing of electrical transformers or other heavy electrical equipment
- 3. Electronics including the commercial manufacturing, reconditioning or recycling of computers, televisions and other electronic devices
- 4. Power stations, substations or switchyards

C Explosives and ordinances production, storage and use

- 1. Explosive or ordinance production, maintenance, dismantling, disposal, bulk storage or re-packaging
- 2. Gun clubs or rifle ranges, including clay targets clubs that use lead munitions outdoors
- 3. Training areas set aside exclusively or primarily for the detonation of explosive ammunition

D Metal extraction, refining and reprocessing, storage and use

- 1. Abrasive blasting including abrasive blast cleaning (excluding cleaning carried out in fully enclosed booths) or the disposal of abrasive blasting material
- 2. Foundry operations including the commercial production of metal products by injecting or pouring molten metal into moulds
- 3. Metal treatment or coating including polishing, anodising, galvanising, pickling, electroplating, or heat treatment or finishing using cyanide compounds
- 4. Metalliferous ore processing including the chemical or physical extraction of metals, including smelting, refining, fusing or refining metals
- 5. Engineering workshops with metal fabrication

E Mineral extraction, refining and reprocessing, storage and use

- 1. Asbestos products manufacture or disposal including sites with buildings containing asbestos products known to be in a deteriorated condition
- Asphalt or bitumen manufacture or bulk storage (excluding single-use sites used by a mobile asphalt plant)
- 3. Cement or lime manufacture using a kiln including the storage of wastes from the manufacturing process
- 4. Commercial concrete manufacture or commercial cement storage
- 5. Coal or coke yards
- 6. Hydrocarbon exploration or production including well sites or flare pits
- 7. Mining industries (excluding gravel extraction) including exposure of faces or release of groundwater containing hazardous contaminants, or the storage of hazardous wastes including waste dumps or dam tailings

F Vehicle refuelling, service and repair

- 1. Airports including fuel storage, workshops, washdown areas, or fire practice areas
- 2. Brake lining manufacturers, repairers or recyclers
- 3. Engine reconditioning workshops
- 4. Motor vehicle workshops
- 5. Port activities including dry docks or marine vessel maintenance facilities

- 6. Railway yards including goods-handling yards, workshops, refuelling facilities or maintenance areas
- 7. Service stations including retail or commercial refuelling facilities
- 8. Transport depots or yards including areas used for refuelling or the bulk storage of hazardous substances

G Cemeteries and waste recycling, treatment and disposal

- 1. Cemeteries
- 2. Drum or tank reconditioning or recycling
- 3. Landfill sites
- 4. Scrap yards including automotive dismantling, wrecking or scrap metal yards
- 5. Waste disposal to land (excluding where biosolids have been used as soil conditioners)
- 6. Waste recycling or waste or wastewater treatment
- Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment
- I Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment

APPENDIX C COUNCIL SITE CONTAMINATION ENQUIRY

18 March 2014

Sinclair Knight Merz Ltd PO Box 9806 Newmarket Auckland 1023

Attention: Walter Starke

Dear Walter

Site Contamination Enquiry – Watercare Proposed North Harbour No. 2 Watermain, various sites from Titirangi to Albany

This letter is in response to your enquiry requesting available site contamination information for the sites stated on your route plans. The following details are based on information available from the former Auckland Regional Council records system and information currently held by the Auckland Council Natural Resources and Specialist Input Unit. The details provided below exclude any property information held by the former district/city councils.

The tables in Attachment A outline the reference for the site-specific files and pollution incident files available for the subject sites.

The general catchment files and site visit files were not searched. These files contain pollution incidents where the source of pollution was not traced to a particular site, site visits where no follow-up correspondence was required and some information from archived files.

If the above sites are coastal or beside a river, it is possible that historic, unconsented reclamation may have occurred. The Auckland Council, Natural Resources and Specialist Input, Coastal Team may be able to provide further information.

The records reviewed as part of this Site Contamination Enquiry search do not identify individual horticultural sites in the region. However, there is a possibility that horticultural activities may have occurred at the sites. The local Auckland Council customer service centre, specific to the area of the site may be able to provide relevant information where former horticultural sites have been mapped.

If you are concerned that a historic land use (such as filling) may have caused the underlying soils to become contaminated, it is recommended that you obtain an independent environmental assessment of the sites. Staff from the Auckland Council Earthworks and Contaminated Land Team can provide advice on the results of any evaluation in terms of site remediation and/or potential consent requirements.

The former Auckland Regional Council and current Natural Resources and Specialist Input Unit databases were searched for records of landfill, bore, air discharge, industrial and trade process consents, contaminated site discharge consents, and environmental assessments for the properties adjacent to the sites. Relevant details of the identified consents are appended to this letter (Attachment B).

The details provided are in accordance with the obligation to make information publicly available upon request. While the Auckland Council has carried out the search using its best practical endeavours, it does not warrant its completeness or accuracy and disclaims any responsibility or liability in respect of the information. If you or any other person wishes to act or to rely on this information, or make any financial commitment based upon it, it is recommended that you seek appropriate technical and/or professional advice.

In addition, it is recommended that you contact the local customer service centre of the Auckland Council, specific to the sites being investigated: 50 Centreway Road, Orewa, 1 The Strand, Takapuna and 6 Henderson Valley Road, Henderson as they also may hold files with relevant information.

I trust that this answers your query. If you wish to discuss the matter further, please contact Andrew Kalbarczyk on 301 0101. Should you wish to request any of the files listed above for viewing, please contact the Auckland Council Call Centre on 301 0101 and note you are requesting former Auckland Regional Council records (the records department requires three working days' notice to ensure files will be available).

Please note: the Auckland Council cost recovers officer's time for all site enquiries. A basic enquiry takes approximately 1 - 2.5 hours to search the files and databases in which information is held. As such an invoice for the time involved in this enquiry will follow shortly.

Yours sincerely

David Hampson

Team Leader - Earthworks and Contaminated Land

Natural Resources and Specialist Input

Attachment A

File Refere	nce	5-21-3923	5-21-3923		
File Name		165A Glen	165A Glengarry Road		
Site Occup	ier Name	Home Imp	rovements Ltd		
Pollution	Date	18/8/06	Comment	Concrete cutting waste entering SW drain	
Pollution	Date	15/8/06	Comment	Exposed aggregate wastewater to stormwater	

File Reference	5-11-4459	5-11-4459			
File Name	149 Glenga	arry Road			
Pollution Date	7/1/11	Comment	Wastewater- Sewer overflow		

File Reference	5-11-4459 & W096-00-S				
File Name	471-479 West Coast Roa	ad (Parks)			
Pollution Date	21/9/11 Comment	Wastewater- Sewer overflow			
Pollution Date	13/6/08 Comment	Wastewater- Sewer overflow			

File Reference	5-11-4650			
File Name	109 Parrs Cross Road	109 Parrs Cross Road		
Pollution Date	14/7/13 Comment	Wastewater- Sewer overflow		
Pollution Date	14/4/13	Wastewater- Sewer overflow		

File Reference	5-11-4650			
File Name	117-119 Parrs Cross Road			
Pollution Date	12/4/12 Comment Wastewater- Sewer overflow			

File Reference	W224-21-SV
File Name	1-3 Forest Hill Road
Site Occupier Name	Gull Petroleum (NZ) Ltd
Pollution Date	14/11/06 Comment Diesel in SW ditch, outside petrol station

File Reference	5-41-365	5-41-3653			
File Name	69 Palom	69 Palomino Drive			
Pollution Date	1/3/13	Comment	Milky colour in the Opanuku stream		

File Reference	5-11-4459			
File Name	61 Palomino Drive			
Pollution Date	1/7/11 Comment Manhole overflowing and going into Opanuku stream			

File Reference	5-21-2499S	
File Name	Munroe Road	
Pollution Date	16/2/06 Comment Wastewater – Sewage Overflow	

File Reference	5-22-1300			
File Name	Metcalf Road			
Pollution Date	31/1/01 Comment Spill of oil from rear ended bus			

File Reference	5-22-1429			
File Name	Metcalf Road			
Pollution Date	27/1/98 Comment Stream turns to sewage in Summer and looks grey			

File Reference	5-10-2564	5-10-2564 & W224-10		
File Name	393-397 D	393-397 Don Buck Road		
Site Occupier Nam	e Mobil Oil N	Mobil Oil NZ Ltd		
Pollution Date	8/9/13	Comment	Petrol spill around 8 litres into the storm drain	
Pollution Date	21/12/10	Comment	Diesel spill	
Pollution Date	21/1/03	Comment	Spill from Mobil forecourt contained in blocked drain. Approx. 10L to land	

File Reference	5-10-1316	5-10-1316			
File Name Corner Don Buck and Triangle Roads		angle Roads			
Pollution Date	26/3/09	Comment	Diesel spill – small amount of 91 petrol having potentially entered S/W system		

File Reference	5-22-1429			
File Name Metcalf Road				
Pollution Date	27/1/98 Comment St	eam turns to sewage in Summer and looks grey		

File Refere	nce	5-10-0739	5-10-0739				
File Name		1 Don Bud	1 Don Buck Road				
Site Occup	ier Name	PCL Feed	PCL Feeds Ltd				
Pollution	Date	28/9/09	Comment	Odour			
Pollution	Date	27/1/09	Comment	White dust from PCL Feeds			
Pollution	Date	5/3/07	Comment	Odour			
Pollution	Date	31/1/07	Comment	Animal feed smell			

File Reference	5-11-4459			
File Name 2/41 Don Buck Road				
Pollution Date	20/5/11 Comment Wastewater – Sewer overflow			

File Reference	5-10-0739	5-10-0739			
File Name	1 Red Hills	Red Hills Road			
Site Occupier Name	Mainfeeds	Mainfeeds Ltd/PCL Industries Ltd			
Pollution Date	Jan-Jun 2013	Comment	Odour complaints		

File Reference	5-10-0900			
File Name	Buckley Ave			
Pollution Date	1/8/02 Comment	Sand contaminated with lead dumped near Kumeu river		
Pollution Date	31/1/01 Comment	Stormwater abuse – chemicals - inorganic		

File Reference	5-11-4459			
File Name 5 Pounamu Ave				
Pollution Date	17/8/11 Comment Wastewater – Sewer overflow			

File Reference	5-11-4450			
File Name	4 Sunnyview Road			
Pollution Date	5/12/12 Comment Wastewater – Sewer overflow			

File Refere	ence	5-40-2271	5-40-2271			
File Name		177 Kyle F	177 Kyle Road			
Pollution	Date	30/8/05	Comment	Possible concrete to creek from road		
Pollution	Date	16/10/99	Comment	Wash off of burnt lime to a stream resulting from a burst water main		

File Reference	5-11-4650				
File Name	End of Kyle Road				
Pollution Date	4/6/12 Comment Wastewater – Sewer overflow				

File Reference	5-11-4459				
File Name	93 Kyle Road				
Pollution Date	22/11/10 Comment Wastewater – Sewer overflow				

File Reference	5-11-3938
File Name	12 Schnapper Rock Road
Pollution Date	8/5/09 Comment Waste to stormwater – concrete cutting without controls

File Reference	5-11-2423
File Name	25 Schnapper Rock Road
Pollution Date	21/1/13 Comment Waste pollution – waste to stormwater

File Reference	5-21-3878	
File Name	2/27 Rhinevale Close	
Pollution Date	26/8/11 Comment	Solvent Odour
Pollution Date	19/8/11 Comment	Strong solvent odour smell

File Reference	5-10-1863	
File Name	119 Fred Taylor Drive	
Pollution Date	9/5/13 Comment Strong Odour	

File Reference	5-10-1038	
File Name	122 Hobsonville Road	
Pollution Date	24/8/94 Comment Pollution incident	

File Reference	5-11-1275	
File Name	70 Upper Harbour Drive	
Pollution Date	18/9/98 Comment	Spill of 2000 litres of diesel while fill

File Reference	7-37-2787
File Name	Upper Harbour Drive
Pollution Date	30/5/02 Comment Truckload of batteries on Upper Harbour Drive

File Reference	5-10-0900
File Name	WCC side of Upper Harbour Drive
Pollution Date	31/1/01 Comment Bright green discharge in water

File Reference	5-11-4650
File Name	33 Greenhithe Road
Pollution Date	7/12/12 Comment Wastewater – Sewer overflow

File Reference	5-11-4457
File Name	75 Greenhithe Road
Pollution Date	19/10/12 Comment Wastewater – Sewer overflow

File Reference	5-11-3680
File Name	Greenhithe Road
Pollution Date	26/10/06 Comment Hydraulic oil in stream from crushed truck

File Reference	6-20-3007
File Name	Greenhithe Road
Pollution Date	25/11/05 Comment White milky discharge into roadside gutter

File Reference	5-11-1272	5-11-1272	
File Name	100 Bush Ro	100 Bush Road	
Pollution Date	13/12/00	Comment	Discharge carpet cleaning waste
Pollution Date	31/7/99	Comment	Discharge wastewater to S/W

File Referer	nce	5-11-1366		
File Name	6 K 4 7/3	169 Bush Road		
Pollution	Date	28/11/08	Comment	Transformer oil spill
Pollution	Date	4/07	Comment	Oil spill
Pollution	Date	26/9/06	Comment	11000 switch valve electrical unit exploded
Pollution	Date	16/1/06	Comment	Diesel spill from truck
Pollution	Date	18/12/05	Comment	Vehicle collision with transformer

Pollution	Date	24/6/05	Comment	Transformer oil going to stream
Pollution	Date	8/3/04	Comment	Drilling done and sediment is going into stormwater
Pollution	Date	10/2/04	Comment	Sediment running off site to stormwater
Pollution	Date	20/10/03	Comment	Transformers onsite, bunded area going to interceptor system

File Reference	5-11-2860		
File Name	191 Bush Road		
Site Occupier Name	Clifton Rentals Ltd		
Pollution Date	24/8/02 Comment	Foam at small weir in Alexandra stream under bridge on Rosedale Road	

File Reference	P270-04-18		
File Name	232 Bush Road		
Site Occupier Name	Accent Tools Ltd		
Pollution Date	31/8/02 Comment Washing cars on yard		

File Reference	5-11-031	5-11-0315		
File Name	Bush Ro	Bush Road		
Site Occupier Na	ne NSCC D	NSCC Depot		
Pollution Date	26/9/94	Comment	Washing rubbish trucks and street cleaners, water running overland and into creeks	

Attachment B

	relevant G/L's. Remed reqrd.
WORKS DESCRIPTION:	TPH, BTEX, PAH found in soils on site above
SITE NAME:	Null
SITE DESCR:	Null
REVIEW DATE:	Null
	were entering stormwater.
	a previous pollution incident where hydrocarbons
PURPOSE:	File ref: 5-21-3869. Investgtn of Gull site that had
PROPERTY ADDRESS:	1-3 Forest Hill Road Henderson Waitakere
PROCESSING OFFICER:	John Earley
PERMITTED ACTIVITY TYPE :	51723
PERMITTED:	Contaminated Site Discharge
NORTHING:	5915668
LOC TYPE:	Area
GRANTED DATE:	Null
FILE REFERENCE:	5-21-3869
EXPIRY DATE:	Null
EASTING:	1744312
CONSENT STATUS:	Under Assessment
ACTIVITY STATUS:	Occurring
ACTIVITY ID:	20797
	were entering stormwater.
NOTITI DECOM TION.	a previous pollution incident where hydrocarbons
ACTIVITY DESCRIPTION:	File ref: 5-21-3869. Investgtn of Gull site that had
1. ACTIVITY:	Contaminated Site Discharge

2. ACTIVITY DESCRIPTION:	To authorise the construction of Eight bores for
	groundwater monitoring purposes.
ACTIVITY ID:	22185
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Toll NZ Consolidated Ltd C/- Arrow International Limited
CONSENT NUMBER:	29767
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20050912
FILE REFERENCE:	C512-12-3378*
GRANTED DATE:	20040910
LOC TYPE:	Point
PROCESSING OFFICER:	Trent Sunich
PROPERTY ADDRESS:	
PURPOSE:	To authorise the construction of Eight bores for groundwater monitoring purposes.
REVIEW DATE:	Null
SITE DESCRIPTION:	North Auckland Railway & Metcalfe Road, Henderson, Waitakere City
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of Eight 50mm diameter bores to an approximate depth of 6m. Installation of class E, PVC casing.

3. ACTIVITY DESCRIPTION:	Discharge of contaminants associated with
	developing and operating an earth fill site.
ACTIVITY ID:	20342
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	NZ Railways Corp t/a Ontrack Infrastructure Ltd
CONSENT NUMBER:	31216
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20401231
FILE REFERENCE:	17432
GRANTED DATE:	20051125
LOC TYPE:	Point
PROCESSING OFFICER:	_Sarah Pinkerton
PROPERTY ADDRESS:	0 Pooks Road Ranui Waitakere
PURPOSE:	To authorise the ongoing diffuse discharge of
	contaminants to ground and groundwater in
	accordance with Section 15 of the Resource
	Management Act 1991.
REVIEW DATE:	20060430
SITE DESCRIPTION:	Null
SITE NAME:	NZRC - Ranui Fill site
WORKS DESCRIPTION:	Null

4. ACTIVITY DESCRIPTION:	To authorise the discharge of contaminats to air
	from the manufacture and processing of stock
	feed and farm supplies.
ACTIVITY ID:	20426
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Discharge To Air
CONSENT HOLDER:	Mainfeeds Limited
CONSENT NUMBER:	37270
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20141130
FILE REFERENCE:	17169
GRANTED DATE:	20131128
LOC TYPE:	Point
PROCESSING OFFICER:	Nicholas Browne
PROPERTY ADDRESS:	3-5 Red Hills Road Massey Waitakere
PURPOSE:	The discharge of contaminants into air from an
	animal feed mill and an 11.25 kW diesel fuelled
以 化共享 医神经炎 化共享 阿里斯拉斯 医二氏	boiler.
REVIEW DATE:	Null
SITE DESCRIPTION:	Stock feed manufacturer with diesel boiler
SITE NAME:	PCL - Mainfeeds Limited
WORKS DESCRIPTION:	Null

5. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	determine ALWP compliance
ACTIVITY ID:	20422
ACTIVITY STATUS:	Completed
CONSENT STATUS:	Assessment Completed
EASTING:	1742962
EXPIRY DATE:	Null

FILE REFERENCE:	5-10-2564
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5922224
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	51293
PROCESSING OFFICER:	_Guy Sowry
PROPERTY ADDRESS:	397 Don Buck Road Massey Waitakere
PURPOSE:	determine ALWP compliance
REVIEW DATE:	Null
SITE DESCR:	397 Don Buck Road Lot 1 DP 211902
SITE NAME:	Mobil Don Buck
WORKS DESCRIPTION:	ust replacement. site remaining as a service
	station.

6. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	To authorise the construction of four bores for
	contaminated site investigation.
ACTIVITY ID:	23522
ACTIVITY STATUS:	Drilled
CONSENT STATUS:	Assessment Completed
EASTING:	1743052
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4552*
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5922294
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52336
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	5 2 Triangle Road Massey Waitakere
PURPOSE:	To authorise the construction of four bores for
	contaminated site investigation.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Challenge Massey
WORKS DESCRIPTION:	The construction of four 50mm diameter bores to
	a maximum depth of 6m. Installation of PVC
	casing material to an approximate depth of 6m.

7. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	4891
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Pattle Delamore Partners Limited
CONSENT NUMBER:	14066
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19960810
FILE REFERENCE:	C512-12-1604*
GRANTED DATE:	19950810
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of three (3)

	piezometers for groundwater level and/or Chemistry investigations
REVIEW DATE:	Null
SITE DESCRIPTION:	Don Buck Road & Triangle Road, Massey West
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of three (3) 50mm dia. piezometers to approx 6m depth. Installation of PVC casing to approx 3m and PVC screen from approx. 3m to 6m if required.

8. ACTIVITY DESCRIPTION:	Change appl # 41419 - Condition 15 of LUC-
	2012-1026 to amend working hours to include
	Sundays. Consent # 40896 - To discharge
	contaminants to land or water from land
	undergoing disturbance, as part of the proposed
	bulk earthworks to create suitable build
ACTIVITY ID:	21331
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Auckland Transport (for regional consents) *
CONSENT NUMBER:	40896
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20180430
FILE REFERENCE:	23392
GRANTED DATE:	20121204
LOC TYPE:	Point
PROCESSING OFFICER:	Samuel Woolley
PROPERTY ADDRESS:	17-19 23, 35-39 Fred Taylor Drive Massey,
	Waitakere
PURPOSE:	To undertake earthworks, vegetation removal and
	discharge of contaminants to land and water.
REVIEW DATE:	20130530
SITE DESCRIPTION:	Null
SITE NAME:	17-19,23,35-39 Fred Taylor Dr, Massey
WORKS DESCRIPTION:	Null

8. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Change appl # 41419 - Condition 15 of LUC-
	2012-1026 to amend working hours to include
	Sundays. Consent # 40896 - To discharge
	contaminants to land or water from land
	undergoing disturbance, as part of the proposed
	bulk earthworks to create suitable build
ACTIVITY ID:	21331
ACTIVITY STATUS:	Occurring
APPLICANT:	Null
APPLICATION:	41419
APPLICATION STATUS:	Withdrawn
EASTING:	1743354
FILE REFERENCE:	23392
LOC TYPE:	Point
LODGED DATE:	20130222
NORTHING:	5923760
PROCESSING OFFICER:	Helen Caley

PROPERTY ADDRESS:	17-19 23, 35-39 Fred Taylor Drive Massey,
	Waitakere
PURPOSE:	To undertake earthworks, vegetation removal and discharge of contaminants to land and water.
SITE DESCRIPTION:	Null
SITE NAME:	17-19,23,35-39 Fred Taylor Dr, Massey
WORKS DESCRIPTION:	Null

9. ACTIVITY DESCRIPTION:	Consent is sought to undertake approximately 41.1 hectares of earthworks, reclaimation/ filling in of W21 & W22 watercourse (as identified in the Totara Creek ICMP) and management & development of a contaminated site.
ACTIVITY ID:	20975
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Cannuck Holdings Limited
CONSENT NUMBER:	36294
CONSENT STATUS:	Superseded
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20141231
FILE REFERENCE:	20865
GRANTED DATE:	20091006
LOC TYPE:	Area
PROCESSING OFFICER:	Andrew Kalbarczyk
PROPERTY ADDRESS:	1 2 Kedgley Drive Massey Waitakere
PURPOSE:	To authorise approximately the discharge of contaminants to groundwater or surface water from a closed solid waste landfill at 1/2A Kedgley Drive, associated with a proposed new town centre, State Highway 16 and Kedgley Drive, (opposite Westgate Shopping
REVIEW DATE:	20131030
SITE DESCRIPTION:	Null
SITE NAME:	Massey North Town Centre Development
WORKS DESCRIPTION:	Null

9. ACTIVITY DESCRIPTION:	Consent is sought to undertake approximately 41.1 hectares of earthworks, reclaimation/ filling in of W21 & W22 watercourse (as identified in the
	Totara Creek ICMP) and management &
	development of a contaminated site.
ACTIVITY ID:	20975
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Westgate Town Centre Limited
CONSENT NUMBER:	38886
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20141230
FILE REFERENCE:	20865
GRANTED DATE:	20110105
LOC TYPE:	Area
PROCESSING OFFICER:	Graham Hooper
PROPERTY ADDRESS:	1 2 Kedgley Drive Massey Waitakere

PURPOSE:	To authorise approximately the discharge of contaminants to groundwater or surface water from a closed solid waste landfill at 1/2A Kedgley Drive, associated with a proposed new town centre, State Highway 16 and Kedgley Drive, (opposite Westgate Shop
REVIEW DATE:	20111031
SITE DESCRIPTION:	Null
SITE NAME:	Massey North Town Centre Development
WORKS DESCRIPTION:	Null

9. ACTIVITY DESCRIPTION:	Consent is sought to undertake approximately 41.1 hectares of earthworks, reclaimation/ filling in of W21 & W22 watercourse (as identified in the Totara Creek ICMP) and management & development of a contaminated site.
ACTIVITY ID:	21072
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Westgate Town Centre Limited
CONSENT NUMBER:	37114
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20441231
FILE REFERENCE:	20865
GRANTED DATE:	20091006
LOC TYPE:	Point
PROCESSING OFFICER:	Andrew Kalbarczyk
PROPERTY ADDRESS:	1 2 Kedgley Drive Massey Waitakere
PURPOSE:	To discharge of contaminants to land and water from land containing elevated levels of contaminants that is undergoing remediation, all associated with a proposed new town centre, State Highway 16 and Kedgley Drive, (opposite Westgate Shopping Centre), M
REVIEW DATE:	20111231
SITE DESCRIPTION:	Null
SITE NAME:	Massey North Town Centre Development
WORKS DESCRIPTION:	Null

10. ACTIVITY DESCRIPTION:	To authorise the construction of 2 bores for geotechnical investigation.
ACTIVITY ID:	23219
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	URS New Zealand Limited
CONSENT NUMBER:	36319
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20091001
FILE REFERENCE:	C512-12-4292*
GRANTED DATE:	20081002
LOC TYPE:	Point
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	13 Holmes Drive South Massey Waitakere

PURPOSE:	To authorise the construction of 2 bores for geotechnical investigation.
REVIEW DATE:	Null
SITE DESCRIPTION:	On the eastern and western side of the Auckland Kumeu Motorway. On the grass verges in front of 13 Holmes Drive Lot 36 DP 87398 and Neon & Boron Limited Lot 1 DP 20568. Both sites owned by NZ Transport Agency
SITE NAME:	URS New Zealand Limited
WORKS DESCRIPTION:	The construction of two 100mm diameter bores to a maximum depth of 15m. Installation of Grade D slotted PVC screening material to an approximate depth of 15m to the bottom of screen and 5m to top of screen. Proposed grouting to 5m.

11. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	The construction of two bores for Geological
	investigation, Geotechnical investigation &
	Groundwater investigation purposes.
ACTIVITY ID:	28758
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Assessment Completed
EASTING:	1745051.08
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-5015*
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5924442.81
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52841
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	74 Hobsonville Road West Harbour Waitakere
PURPOSE:	The construction of two bores for Geological
	investigation, Geotechnical investigation &
	Groundwater investigation purposes.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Auckland Council
WORKS DESCRIPTION:	The construction of two 100mm diameter bores to
	an approximate depth of 15m. Installation of steel
	socketed and screwed casing material to an
	approximate depth of 10m. Proposed grouting to
	full length.

12. ACTIVITY DESCRIPTION:	Approx 1.5 cmpd.
ACTIVITY ID:	4809
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	MR GD WALKER HJ MATHEWS JM MATHEWS PS WALKER
CONSENT NUMBER:	13844
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19960426
FILE REFERENCE:	C512-12-1566

GRANTED DATE:	19950426
LOC TYPE:	Point
PROCESSING OFFICER:	Gillian Crowcroft
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of a bore for the extraction of groundwater for stock and domestic supply
REVIEW DATE:	Null
SITE DESCRIPTION:	124 Hobsonville Road, Hobsonville
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx 200m depth and installation of steel casing to approx. 65m.

13. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	To authorise the construction of one bore for
特别是一种企业的企业,但是一种企业的企业,但是一种企业的企业。	groundwater and contaminated site investigation.
ACTIVITY ID:	23447
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Assessment Completed
EASTING:	1747145
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4484
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5926265
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52267
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	12 Clark Road Hobsonville Waitakere
PURPOSE:	To authorise the construction of one bore for
	groundwater and contaminated site investigation.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	BP Oil New Zealand Limited
WORKS DESCRIPTION:	Work done by Fuel Installations. Contact Bryce
	Bacon - 021 948623

14. ACTIVITY DESCRIPTION:	Discharge of contaminants from air force base land
ACTIVITY ID:	
ACTIVITY ID:	20490
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Hobsonville Land Company Limited
CONSENT NUMBER:	32584
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20411231
FILE REFERENCE:	19067
GRANTED DATE:	20070813
LOC TYPE:	Point
PROCESSING OFFICER:	_John Earley
PROPERTY ADDRESS:	Buckley Avenue Hobsonville Waitakere
PURPOSE:	To authorise the ongoing diffuse discharge of
	contaminants to ground and groundwater in

	accordance with Section 15 of the Resource Management Act 1991.
REVIEW DATE:	20070930
SITE DESCRIPTION:	Null
SITE NAME:	NZDF - Sludge Bed Remediation
WORKS DESCRIPTION:	Null

15. ACTIVITY DESCRIPTION:	To authorise the construction of up to three bores
	for monitoring purposes.
ACTIVITY ID:	22018
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	New Zealand Defence Force - Environmental
	Services
CONSENT NUMBER:	28653
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20041210
FILE REFERENCE:	C512-12-3217*
GRANTED DATE:	20031209
LOC TYPE:	Point
PROCESSING OFFICER:	Amy Boulton
PROPERTY ADDRESS:	Buckley Avenue Hobsonville Waitakere
PURPOSE:	To authorise the construction of up to three bores
	for monitoring purposes.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of up to three bores to a depth of
	approximately 5m. Installation of PVC casing to a
	depth of approximately 2.6m.

16. ACTIVITY DESCRIPTION:	New consent application
ACTIVITY ID:	21183
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Westgate Town Centre Limited
CONSENT NUMBER:	38794
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20151231
FILE REFERENCE:	20865
GRANTED DATE:	20110105
LOC TYPE:	Point
PROCESSING OFFICER:	Graham Hooper
PROPERTY ADDRESS:	9-11 State Highway 16 Massey Waitakere
PURPOSE:	To authorise approximately the discharge of
	contaminants to groundwater or surface water
	from a closed solid waste landfill at 1/2A Kedgley
	Drive, associated with a proposed new town
	centre, State Highway 16 and Kedgley Drive,
	(opposite Westgate Shop
REVIEW DATE:	20111031
SITE DESCRIPTION:	Null
SITE NAME:	Massey North

WORKS DESCRIPTION:	Null	
--------------------	------	--

17. ACTIVITY DESCRIPTION:	To authorise the construction of 56 bores for a
ACTIVITY ID:	new motorway development. 22461
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	NZ Transport Agency ****use 5781****
CONSENT NUMBER:	31774
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20061130
FILE REFERENCE:	C512-12-3611*
GRANTED DATE:	20051128
LOC TYPE:	Point
PROCESSING OFFICER:	_Daryl Henehan
PROPERTY ADDRESS:	23-25 Trig Road Whenuapai Waitakere
PURPOSE:	To authorise the construction of 56 bores for a
	new motorway development.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Null
WORKS DESCRIPTION:	Null

18. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	5253
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	TUXFORD PROPERTIES LTD
CONSENT NUMBER:	15154
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19970506
FILE REFERENCE:	C512-12-1766
GRANTED DATE:	19960506
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of a bore for the
	extraction of groundwater for stock and domestic
	supply
REVIEW DATE:	Null
SITE DESCRIPTION:	100 Hobsonville Road, Hobsonville
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx.
	150m depth and installation of PVC casing to
	approx. 50m.

	200m depth and installation of steel casing to approx. 65m.
WORKS DESCRIPTION:	Construction of a 100mm dia, bore to approx
SITE NAME:	Null
SITE DESCRIPTION:	124 Hobsonville Road, Hobsonville
REVIEW DATE:	Null
	supply
PURPOSE:	Authorize the construction of a bore for the extraction of groundwater for stock and domestic
PROPERTY ADDRESS:	Authorize the construction of a base for the
PROCESSING OFFICER:	_Gillian Crowcroft
LOC TYPE:	Point
GRANTED DATE:	19950426
FILE REFERENCE:	C512-12-1566
EXPIRY DATE:	19960426
DATE CREATE:	13/03/2014 7:18:58 p.m.
CONSENT STATUS:	Expired
CONSENT NUMBER:	13844
	PS WALKER
CONSENT HOLDER:	MR GD WALKER HJ MATHEWS JM MATHEWS
ACTIVITY TYPE:	Bore
ACTIVITY STATUS:	Drilled
ACTIVITY ID:	4809
19. ACTIVITY DESCRIPTION: (duplicate of 12)	Approx 1.5 cmpd.

20. ACTIVITY DESCRIPTION:	Discharge of contaminants associated with
	earthworks involved with the development of a
	proposed retirement village complex.
ACTIVITY ID:	21295
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Summerset Villages (Hobsonville) Limited
CONSENT NUMBER:	40426
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20231101
FILE REFERENCE:	23091
GRANTED DATE:	20131101
LOC TYPE:	Point
PROCESSING OFFICER:	Helen Caley
PROPERTY ADDRESS:	22-24 Upper Harbour Drive Hobsonville
	Waitakere
PURPOSE:	To discharge contaminants associated with the
	development and operation of a retirement
	village.
REVIEW DATE:	20141101
SITE DESCRIPTION:	Null
SITE NAME:	1-2 Squadron Drive, Hobsonville
WORKS DESCRIPTION:	Null

21. ACTIVITY DESCRIPTION:	Stock and domestic and to supply a restaurant.
	Will require a Permitted Activity.
ACTIVITY ID:	21079
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	MICHAEL RONALD EVANS & ANN KATHLEEN
	EVANS
CONSENT NUMBER:	23230
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20020201
FILE REFERENCE:	C512-12-2485
GRANTED DATE:	20010201
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	22-24 Upper Harbour Drive Hobsonville
美国的人名英 拉拉拉拉克 医克里克斯氏征	Waitakere
PURPOSE:	Authorise the construction of a bore for stock and
	domestic supply and to supply a restaurant.
REVIEW DATE:	Null
SITE DESCRIPTION:	5 Upper Harbour Drive, Hobsonville.
SITE NAME:	MR & AK Evans
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a
	depth of approximately 200m and installation of
	PVC casing to approximately 65m depth.

22. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	To discharge contaminants to land or water from
	land undergoing disturbance as part of the
	proposal to create development lots to facilitate
	future development of the Hobsonville
	Sunderland Precinct Buckley Avenue East.
ACTIVITY ID:	21441
ACTIVITY STATUS:	Occurring
APPLICANT:	Hobsonville Land Company Limited
APPLICATION:	42393
APPLICATION STATUS:	Processing
EASTING:	1748353
FILE REFERENCE:	24188
LOC TYPE:	Point
LODGED DATE:	20131118
NORTHING:	5927369
PROCESSING OFFICER:	Helen Caley
PROPERTY ADDRESS:	Buckley Avenue Hobsonville Waitakere
PURPOSE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Hobsonville Sunderland Precinct Buckley Ave
	East
WORKS DESCRIPTION:	Null

23. ACTIVITY DESCRIPTION:	Authorise the construction of a bore for the
	extraction of groundwater for domestic supply.
ACTIVITY ID:	20150
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	MR K MAREVICH
CONSENT NUMBER:	21320
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19990408
FILE REFERENCE:	C512-12-2172
GRANTED DATE:	19980407
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	74 Upper Harbour Drive Greenhithe North Shore
PURPOSE:	Authorise the construction of a bore for the
	extraction of groundwater for domestic supply.
REVIEW DATE:	Null
SITE DESCRIPTION:	74 Upper Harbour Drive, Greenhithe
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a
	depth of approximately 200m and installation of
	PVC casing to approximately 60m depth.

24. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21855
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Kerrie Cleverdon Orton, John William Orton &
	Anthony Charles Horrocks
CONSENT NUMBER:	27736
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20040312
FILE REFERENCE:	C512-12-3069
GRANTED DATE:	20030311
LOC TYPE:	Point
PROCESSING OFFICER:	_Michelle Ip
PROPERTY ADDRESS:	124 Upper Harbour Drive Albany North Shore
PURPOSE:	Authorise the construction of a bore for domestic
	supply.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a
	depth of approximately 200m. Installation of PVC
	casing to a depth of approximately 70m.

25. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21191
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	MARK GORDON HILLIS GAYLE KATHLEEN
	HILLIS MARY ELLEN COLE
CONSENT NUMBER:	23881
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20010329
FILE REFERENCE:	C512-12-2555
GRANTED DATE:	20000328
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	175 Upper Harbour Drive Greenhithe North
	Shore
PURPOSE:	Authorise the construction of a bore for the
	extraction of groundwater for domestic supply
REVIEW DATE:	Null
SITE DESCRIPTION:	175 Upper Harbour Drive, Greenhithe
SITE NAME:	MG & GK Hollis
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a
	depth of approximately 200m and installation of
	PVC casing to adepth of approximately 60m.

26. ACTIVITY DESCRIPTION:	Construction of a 100mm dia. bore to approx.
	150m depth and installation of P.V.C. casing to
	approx. 60m.
ACTIVITY ID:	503
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	JWYATT
CONSENT NUMBER:	10675
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19910122
FILE REFERENCE:	14/17/437
GRANTED DATE:	19900118
LOC TYPE:	Point
PROCESSING OFFICER:	Andrew Millar
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of a bore for the
	extraction of groundwater for stock and domestic
	supply.
REVIEW DATE:	Null
SITE DESCRIPTION:	260 Upper Harbour Drive,, Greenhithe,
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx.
	150m depth and installation of P.V.C. casing to approx. 60m.

27. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21375
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	NZ Transport Agency Attn: Tammy Muharemi
CONSENT NUMBER:	25014
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20020319
FILE REFERENCE:	C512-12-2702*
GRANTED DATE:	20010319
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	Upper Harbour Motorway Auckland
PURPOSE:	Authorise the construction of twenty six (26)
	bores for geotechnical investigation.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Upper Harbour Corridor
WORKS DESCRIPTION:	Construction of twenty six (26) 100mm diameter
	bores to a depth of approximately 25m.
	Installation of PVC casing.

28. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	The construction of three 100mm diameter bores
	to a maximum depth of 20m.
ACTIVITY ID:	27946
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Assessment Completed
EASTING:	1752320.96
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4816*
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5930368.16
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52624
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	
PURPOSE:	The construction of three 100mm diameter bores
	to a maximum depth of 20m.
REVIEW DATE:	Null
SITE DESCR:	Three locations along Albany Highway road
	reserve between Upper Harbour Drive and
	Sunset Road.
SITE NAME:	Albany Highway Widening
WORKS DESCRIPTION:	Null

29. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Caltex Schnapper Rock 178 Old Albany
	Highway
ACTIVITY ID:	20311
ACTIVITY STATUS:	Completed
CONSENT STATUS:	Assessment Completed
EASTING:	1751932
EXPIRY DATE:	Null
FILE REFERENCE:	5-01-3451
GRANTED DATE:	Null
LOC TYPE:	Area
NORTHING:	5930776
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	51104
PROCESSING OFFICER:	_Sarah Pinkerton
PROPERTY ADDRESS:	
PURPOSE:	complete tank pull
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Caltex Schnapper Rock
WORKS DESCRIPTION:	PO peter KAvanagh

30. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Proposed res dev't on site with fill from road
	scrapings. Elevated PAH.
ACTIVITY ID:	20856
ACTIVITY STATUS:	Completed
CONSENT STATUS:	Assessment Completed
EASTING:	1751661
EXPIRY DATE:	Null
FILE REFERENCE:	5-11-3938
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5930876
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	51793
PROCESSING OFFICER:	Andrew Kalbarczyk
PROPERTY ADDRESS:	12 Schnapper Rock Road Schnapper Rock North
	Shore
PURPOSE:	File ref: 5-11-3938. Proposed res dev't on site
	with fill from road scrapings. Elevated PAH.
REVIEW DATE:	Null
SITE DESCR:	Proposed res dev't on site with fill from road
	scrapings. Elevated PAH.
SITE NAME:	12 Schnapper Rock Rd
WORKS DESCRIPTION:	Removal of 40-60 cubic metres of soil. Site
	validation.

31. ACTIVITY DESCRIPTION:	An application for a contaminated site discharge consent associated with the proposed development of the site into a resource recovery facility
ACTIVITY ID:	21190
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Atlas Concrete Limited
CONSENT NUMBER:	39060
CONSENT STATUS:	Surrendered
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20160430
FILE REFERENCE:	22398
GRANTED DATE:	20110523
LOC TYPE:	Point
PROCESSING OFFICER:	Andrew Kalbarczyk
PROPERTY ADDRESS:	8 Paul Matthews Road Rosedale North Shore
PURPOSE:	To discharge contaminants to land or water associated with land disturbance during the proposed site development works. This is for a short term discharge consent for the initial site development works for a resource recovery facility.
REVIEW DATE:	20120531
SITE DESCRIPTION:	Null
SITE NAME:	8 Paul Matthews Road, Rosedale
WORKS DESCRIPTION:	See also Air: 38988 (file no 22352), Stormwater 39058 file no 22397) & ITP: 39059 (file no 22397).

31. ACTIVITY DESCRIPTION:	To discharge contaminants onto or into land or
	water from an industrial trade process associated
	with the crushing of recycled concrete(including
	other ancillary processes).
ACTIVITY ID:	230
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Industrial or Trade Process
CONSENT HOLDER:	Atlas Concrete Limited
CONSENT NUMBER:	39059
CONSENT STATUS:	Issued
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20460513
FILE REFERENCE:	22397
GRANTED DATE:	20110516
LOC TYPE:	Point
PROCESSING OFFICER:	Jacqueline Anthony
PROPERTY ADDRESS:	8 Paul Matthews Road Rosedale North Shore
PURPOSE:	To discharge contaminants onto or into land or
	water from an industrial trade process associated
	with the crushing of recycled concrete(including
	other ancillary processes).
REVIEW DATE:	20120630
SITE DESCRIPTION:	Null
SITE NAME:	8 Paul Matthews Road, Rosedale
WORKS DESCRIPTION:	See also Air: 38988 (file no. 22398), Stormwater
	39058 (file no 22397) & Contaminated Land

discharge 39060 (file no 22352).

31. ACTIVITY DESCRIPTION:	To discharge contaminants to air from activities which are associated with the crushing of
A O T I V T V I D	recycled concrete and other ancillary processes
ACTIVITY ID:	20482
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Discharge To Air
CONSENT HOLDER:	Atlas Concrete Limited
CONSENT NUMBER:	38988
CONSENT STATUS:	Issued
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20260513
FILE REFERENCE:	22352
GRANTED DATE:	20110516
LOC TYPE:	Point
PROCESSING OFFICER:	Mike Harvey
PROPERTY ADDRESS:	8 Paul Matthews Road Rosedale North Shore
PURPOSE:	To discharge contaminants to air from activities
	which are associated with the crushing of
	recycled concrete and other ancillary processes
REVIEW DATE:	20120630
SITE DESCRIPTION:	Concrete crushing facility
SITE NAME:	8 Paul Matthews Road
WORKS DESCRIPTION:	See also ITP: 39059 (file no 22397), Stormwater
	39058 (file no 22397) & Contaminated Land
	discharge 39060 (file no. 22398).

32. ACTIVITY DESCRIPTION:	Discharge of contaminants to land from an
	industrial trade process associated with
	commercial offices and storage depot for an
	electricity servicing operation.
ACTIVITY ID:	99
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Industrial or Trade Process
CONSENT HOLDER:	Siemens (NZ) Limited
CONSENT NUMBER:	32849
CONSENT STATUS:	Surrendered
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20271231
FILE REFERENCE:	2343
GRANTED DATE:	20071108
LOC TYPE:	Point
PROCESSING OFFICER:	_Chris Bailey
PROPERTY ADDRESS:	169 Bush Road Rosedale North Shore
PURPOSE:	To authorise the discharge of contaminants onto
	or into land from an industrial or trade process in
	accordance with Section 15 of the Resource
	Management Act 1991.
REVIEW DATE:	Null
SITE DESCRIPTION:	Administration and servicing of electrical and gas
	utilities
SITE NAME:	Siemens Energy Services
WORKS DESCRIPTION:	Works Catchment area- impervious Catchment
	area- pervious Design Standard

Triple Interceptor Tank (existing)
0.1134 ha
Compliant with ARC TP10 (1992) oil/water
separation Mixed media (sand and peat) filter
0.2650 ha Compliant with ARC TP10 (July 2003)

33. ACTIVITY:	Industrial or Trade Process
ACTIVITY DESCRIPTION:	Discharge of contaminants to land from an
	industrial trade process associated with
	commercial offices and storage depot for an
	electricity servicing operation.
ACTIVITY ID:	99
ACTIVITY STATUS:	Proposed
APPLICANT:	Null
APPLICATION:	32646
APPLICATION STATUS:	Not Accepted For Pro
EASTING:	1752370
FILE REFERENCE:	2343
LOC TYPE:	Point
LODGED DATE:	20060526
NORTHING:	5931780
PROCESSING OFFICER:	Null
PROPERTY ADDRESS:	169 Bush Road Rosedale North Shore
PURPOSE:	Null
SITE DESCRIPTION:	Administration and servicing of electrical and gas
	utilities
SITE NAME:	Siemens Energy Services
WORKS DESCRIPTION:	Null

34. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21705
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	North Shore City Council
CONSENT NUMBER:	26744
CONSENT STATUS:	Expired
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20030526
FILE REFERENCE:	C512-12-2926
GRANTED DATE:	20020524
LOC TYPE:	Point
PROCESSING OFFICER:	Roger Bannister
PROPERTY ADDRESS:	0066 BUSH RD NORTH
	HARBOUR INDUSTRIAL
PURPOSE:	Authorise the construction of a bore for
1000年第二日,中华美国共和国共和国共和国共和国共和国共和国共和国共和国共和国共和国共和国共和国共和国	groundwater monitoring purposes.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a
	depth of approximately 10m.

35. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	5695
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Maunsell Limited
CONSENT NUMBER:	16024
CONSENT STATUS:	Expired
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	19980320
FILE REFERENCE:	C512-12-1957
GRANTED DATE:	19970320
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of a bore for
	groundwater level and/or Chemistry investigations
REVIEW DATE:	Null
SITE DESCRIPTION:	SPENCER RD, ALBANY,
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx 20m depth. Installation of PVC casing to approx 15m and PVC screen from approx. 15m to 20m if required.

36. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	The construction of a 100mm diameter bore to an
	approximate depth of 16.95m for geotechnical
	investigation purposes.
ACTIVITY ID:	27905
ACTIVITY STATUS:	Drilled
CONSENT STATUS:	Assessment Completed
EASTING:	1753072
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4812
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5933811
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52621
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	69 Corinthian Drive Albany North Shore
PURPOSE:	The construction of a 100mm diameter bore to an
	approximate depth of 16.95m.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Corinthian Drive, Albany.
WORKS DESCRIPTION:	Null

36. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	The construction of a 100mm diameter bore to an
	approximate depth of 16.95m for geotechnical
	investigation purposes.
ACTIVITY ID:	27905
ACTIVITY STATUS:	Drilled
APPLICANT:	Null
APPLICATION:	39146
APPLICATION STATUS:	Invalid
EASTING:	1753072
FILE REFERENCE:	C512-12-4812
LOC TYPE:	Point
LODGED DATE:	20110411
NORTHING:	5933811
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	69 Corinthian Drive Albany North Shore
PURPOSE:	To authorise the construction of a bore for water
	level monitoring and geotechinical purposes. no
	abstaction intended.
SITE DESCRIPTION:	Null
SITE NAME:	Corinthian Drive, Albany.
WORKS DESCRIPTION:	the construction of a 100mm diameter bore to an
	approximate depth of 16.95m

APPENDIX D SAMPLING METHODOLOGY: SOIL, SEDIMENT & GROUNDWATER

Sampling Methodology: Ground Contamination

By: Walter Starke, Jacobs SKM

Date: 5th May 2014

Revision: 1- final issue

1) Introduction

Watercare Services Ltd (Watercare) is the primary distributer of potable water in the Auckland Region. Watercare require a second pipeline, the North Harbour No. 2 Watermain, to accommodate growth and development in the north and western areas of the Auckland region. It is also required in order to provide redundancy in the Watercare network supplying Waitakere, North Shore, the Whangaparoa Peninsula and Orewa.

The North Harbour No. 2 Watermain will extend between the future Titirangi No. 3 (Manuka Road) Reservoir at the Huia Water Treatment Plant (WTP) and the Albany Reservoir.

In summary the North Harbour No. 2 Watermain Project incorporates:

- a) a pipeline length of approximately 33 km;
- b) a nominal pipeline internal diameter of 1200 mm between Manuka Road Reservoir and the Swanson Watermain (a pipe length of approximately 10-11 km);
- c) a nominal pipeline internal diameter of 910 mm between the Swanson Watermain and the Albany Reservoirs (a pipe length of approximately 22 km);
- d) Associated works including pipe bridges, coastal crossings, chambers and operational features such as air, line and scour valves.

To assess if ground contamination would adversely affect the proposed pipeline Watercare engaged Jacobs SKM to carry out an initial fatal flaw assessment in early 2014. This work is presented in the report titled *Initial Fatal Flaw Assessment- Soil & Groundwater Contamination*, revision 3, dated 3rd April 2014 (Jacobs SKM, 2014).

One of the recommendations of the report was to prepare a Sampling & Analysis Plan (SAP) to obtain site specific soil and groundwater quality data for the preferred route and to obtain this data, where practical, during future geotechnical and hydrogeological fieldwork for the proposed pipeline.

The first stage of the geotechnical and hydrogeological fieldwork is presented in the URS New Zealand Ltd (URS) report titled "Specification, North Harbour No. 2 Watermain, Advanced Works Greenhithe and Stream Crossing, Geotechnical Investigation Updated Scope", ref. 42073300/S001/B, status- final, dated 27th March 2014. This report contained the proposed geotechnical investigation locations.

On 15th April 2014 Jacobs SKM prepared a Draft Sampling & Analysis Plan (SAP), with respect to soil and groundwater contamination, based on the geotechnical specification by URS. The draft SAP provided proposed soil, sediment and groundwater sample locations and depths, and the proposed laboratory testing regime.

On 30th April URS, Watercare and Tonkin & Taylor Ltd (T&T) provided comments on the draft SAP. Their comments have been included in the attached updated version of the SAP, revision 1.

This document/memorandum provides the sampling methodology for the attached SAP, revision 1.

It is assumed that the reader of this document is familiar with the above-mentioned reports.

2) General: Soil, Sediment and Groundwater

It is anticipated that all soil, sediment and groundwater samples will be taken during the geotechnical and hydrogeological fieldwork for the Advanced Works Greenhithe and Stream Crossings.

3) Soil Sampling

Soil samples will be collected from the strata and/or depth ranges:

- a) The near surface soils, described as 0.0-0.2 metres below ground level (m bgl).
- b) At a change in strata/geology.
- c) Where there is visual or olfactory evidence of ground contamination
- d) At the groundwater table.

The attached SAP, rev. 1, has allowed for soil samples to be taken from the following three depth ranges: 0.0-0.2 m, 0.9-1.1m and 1.9-2.1 m. These are indicative depths only and items a) to d) above will take precedence of these three depth ranges.

The following items shall be recorded and/or undertaken during the soil sampling fieldwork:

- e) The fieldstaff taking the soil samples shall maintain a daily site log, including, as a minimum, the date, person carrying out the work, weather conditions and that the actual sample locations match those presented on the SAP. If the sample locations have changed Jacobs-SKM shall be notified immediately (for example, via mobile telephone) and the newly agreed locations shall be clearly reported by the fieldstaff in the daily site logs.
- f) All soil samples shall be labelled, as a minimum, with a unique sample number part referencing the borehole number, the depth the sample was collected at, date and time of sampling, project number and name of initial of person sampling.
- g) All soil samples shall be placed in laboratory cleaned sample containers/jars.
- h) Avoid cross contamination between sample locations by, for example, using stainless steel tools to obtain the sample, decontaminate the sampling tools using Decon 90 or a similar industrial type material, use fresh and disposable latex glove when taking each sample and ensuring the drilling rig is decontaminated appropriately.
- i) In the field place all sample containers in a cooled chilly-bin or similar insulated container(s) and be couriered to the laboratory the same day. If samples are to be kept overnight they shall be refrigerated at 4C and couriered to the chemical testing laboratory the following day.
- j) The chemical testing laboratory shall be one that is certified by International Accreditation New Zealand (IANZ).
- k) A field replicate sample shall be taken every ten samples.
- The fieldstaff shall report the absence or presence of visual and/or olfactory evidence of contamination in the sample.

4) Sediment Sampling

The sediment sample locations shall be obtained from the locations identified on the attached SAP, rev. 1.

Sediment samples will be collected from the following depth ranges:

- a) From 0.0-0.1 m depth.
- b) From 0.9-1.0 m depth.
- c) From 1.9-2.0 m depth.
- d) If the sediment depth is less than 0.9 m than the sediment sample shall be taken from the lowest 100 mm of sediment. For example, if the sediment depth is 800 mm below ground level the sediment sample shall be taken from 0.7-0.8 m depth.
- e) If the sediment depth is less than 0.5 m, the only sediment sample shall be from 0.0-0.1 m.
- f) The same sediment sampling philosophy applies for sediment depths greater than 1.0 m.

All samples will be obtained by a sediment sampler such as a piston push probe sampler. The surface sample will be collected from the top of the core. The items to be recorded and/or undertaken during the sediment sampling fieldwork shall be the same as that for the soil sampling fieldwork described above.

5) Groundwater: Boreholes & Monitoring Well Installation

The boreholes and monitoring well installation shall be constructed in accordance with New Zealand Standard (NZS) 4411; 2001, titled "Environmental Standard for Drilling of Soil and Rock".

The boreholes shall be logged in accordance with the document titled "Field Description of Soil and Rock, Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes" published by the New Zealand Geotechnical Society (NZGS) in 2005.

The drilling rig shall be appropriately cleaned prior to the drilling works starting, between borehole locations and when there is visual and/or olfactory evidence of ground contamination during drilling. All cleaning procedures shall be recorded in the daily field-log by the fieldstaff.

The monitoring well installation shall be as described in Jacobs-SKM hydrogeological part of the project.

For those piezometers scheduled for groundwater sampling (see item 6 below) the minimum piezometer diameter shall be a minimum of 32 mm and the screen depth shall be at least 1 m above the highest groundwater table level and be 1 m below the lowest groundwater table level.

All monitoring wells shall be 'developed' by removing the sediment within the well (as far as is reasonably practical), for example, using compressed air to clear the well or suspended sediments located within the well. This work shall be carried out prior to moving to the next borehole location.

6) Groundwater: Sampling

The groundwater samples shall be collected from the locations identified on the attached SAP, rev. 1.

The groundwater samples shall be collected in accordance with good guidance practice such as the AS/NZS 5667.11:1998 document titled "Water quality—Sampling. Part 11: Guidance on Sampling of Groundwaters."

Groundwater samples shall be collected as follows:

- a) Record the condition of the well/piezo head.
- b) After removing the cap from the well head record the presence or absence of odours emanating from the well.
- c) Measure depth the groundwater table and depth to the base of the monitoring well and record.
- d) Calibrate the portable field testing parameter kit which must contain, as a minimum, pH-Value, Electrical Conductivity and Temperature.
- e) Collect groundwater samples using low flow portable peristaltic pumps.
- f) Clean sampling equipment using distilled water with Decon 90 or similar and/or use dedicated tubing for the groundwater sampling.
- g) Purge a minimum of three well volumes prior to sampling.
- h) During purging record the field parameters (see item d above).
- i) Continue purging until field parameters have stabilised: pH-Value ± 0.1, Electrical Conductivity ± 3% and temperature ±0.2%.
- j) During purging record the groundwater table depth in the well.
- k) Label groundwater sample bottles appropriately (see Section 3-f above).
- Collect groundwater sample for which field filtering is not required and place into appropriate sample bottle.
- m) Field filter (0.45 μm) groundwater sample for dissolved metals using laboratory supplied filter kit and place into appropriate sample bottle.
- n) Record the depth to the groundwater table immediately after the groundwater samples have been taken.
- All groundwater samples shall be labelled, as a minimum, with a unique sample location number part referencing the borehole number, date and time of sampling, project number and name of initial of person sampling
- p) The additional item to be recorded and/or undertaken during the groundwater sampling fieldwork shall be the same as that for the soil sampling fieldwork described above.

7) Chain of Custody /Request for Analysis Form

A Chain of Custody/Request for Analysis Form shall be maintained for all soil, sediment and groundwater samples. An example of a suitable form is the standard Chain of Custody/Request for Analysis form from R J Hill Laboratories in Hamilton.

8) Laboratory Testing

All laboratory testing shall be carried out using an IANZ certified laboratory such as R J Hill Laboratories in Hamilton.

The proposed laboratory testing regime is indicated on the attached Excel Spreadsheet. To clarify: for sediment laboratory testing two types of 'metal' testing has been scheduled, see attached Excel Spreadsheet:

- a) Metals (1): this testing is scheduled to provide an assessment should the sediment be removed off-site to an appropriate landfill disposal site.
- b) Ecology Metals (7): this testing is scheduled to provide an ecological assessment of the sediment, in particular the Environmental Response Criteria (ERC), in accordance with the document Auckland Regional Council Technical Publication (TP) No. 168, August 2004. For example, the ERC for heavy metals are assessed against the test results of a weak acid digestion of the mud fraction (<63μm) or a strong acid digestion of the total sediment fraction (<500μm). Testing should be carried out on the uppermost (surface) 2 cm of sediment only, as per TP168.</p>

The detection limits for the proposed laboratory testing shall be, as a minimum, those presented in Table 1 below. These detection limits are broadly those provided by R J Hill Laboratories Ltd.

9) Quality Control

All soil, sediment and groundwater samples shall be obtained in accordance with good practices for contaminated land investigations. Key items are as follows:

- a) Decontaminate all sampling equipment between sampling locations.
- b) Obtain one replicate sample for every ten samples taken.
- c) Only use laboratory cleaned sample jars/containers.
- d) Label each sample so that it can be uniquely identified.
- e) Record all sampling and fieldwork undertaken, including any deviations from this Sampling Methodology document.
- f) Use appropriate Chain of Custody/Request for Analysis Forms.
- g) Use an IANZ certified laboratory for the contaminant testing.
- h) All soil, sediment and groundwater samples that are not scheduled for laboratory testing shall be sent to Watercare Services Ltd within 1 week of the samples being taken. It is envisaged that the samples will be kept for a period of six months after the fieldwork has been completed.

Table 1: Minimum Detection Limits: Laboratory Testing

Parameter	Soil & Sediment (mg/kg)	Sediment (mg/kg), ARC extraction	Groundwater (g/m3)
Arsenic	2	1	0.001
Cadmium	0.1	0.05	0.00005
Chromium	2	1	0.0005
Copper	2	1	0.0005
Lead	0.4	0.2	0.0001
Nickel	2	1	0.0005
Zinc	4	2	0.001
Mercury	0.1	0.05	0.00008
TPH:		n/a	
C7C9	8		0.1
C10-C14	20		0.2
C15-C36	30		0.4
C7-C36 (total)	60		0.7
РаН	0.03-0.1	n/a	0.0001-0.0005
OCP	0.01	n/a	No test required
ТВТ	0.05	n/a	No test required
TOC	0.05 gram/100 gram	n/a	No test required

Notes:

a) n/a = not applicable

10) Abbreviations

AC: Auckland Council

ARC: Auckland Regional Council (now part of AC)

AS: Australian Standard

EC: Electrical Conductivity

g/m³: grams per cubic metre = parts per billion = ppb

IANZ: International Accreditation New Zealand

Jacobs SKM: SKM became part of Jacobs in December 2013.

km: kilometre.

m: metre

mg/kg: milligram per kilogram = parts per million = ppm

 μ m: micrometre (= 1 x 10⁻⁶ m)

NZGS: New Zealand Geotechnical Society

NZS: New Zealand Standard

μm: micro-metre

OCP: Organochlorine Pesticides

PaH: Polycyclic Aromatic Hydrocarbons

SAP: Sampling & Analysis Plan

SKM: Sinclair Knight Merz Ltd (now part of Jacobs)

TBT: Tributyl tin

TOC: Total Organic Carbon

TP: Technical Publication

TPH: Total Petroleum Hydrocarbons

T&T: Tonkin & Taylor Ltd

URS: URS New Zealand Ltd

North Harbour No. 2 Watermain

Watercare: Watercare Services Ltd

WMNH2: North Harbour No. 2 Watermain

WTP: Water Treatment Plant

Title: Proposed Soil, Sediment & Groundwater Sampling & Analysis Programme, Revision 1- Final

By: Walter Starke (Jacobs SKM)

Date: 05 May 2014

Note: Locations of boreholes presented in Specification North Harbour No. 2 Watermain, Advanced Works Greenhithe & Stream Crossings- Geotechnical Investigation Updated Scope- DRAFT, prepared by URS for Watercare, dated 27 March 2014

Note: The Proposed Soil, Sediment and Groundwater Sampling & Analysis Programme. Rev. 1- Final should not be read in isolation but together with the Jacobs-SKM Sampling Methodology- rev. 1- final, for Watercare Services Ltd, Dated 05 May 2014.

1. Soil, Sediment & Groundwater Sampling Programme

Item	Machine	Hand Auger	Hand Auger	Piezo	Gw sample?		Soil Samples			ment Samples	
	Boreholes	Boreholes	Boreholes				Depth (m bgl)			epth (m bgl)	
			+ Scalas						Note: it is possible	that the depth of sec	liment is
									less than 1.0 m at tl	ne proposed sedimer	nt sample
A- Adva	anced Wor	ks							locations and ther	efore the depths bel	ow are
									indicative only		
1	BH-201			Υ	Υ	0.0-0.2	0.9-1.1	1.9-2.9			
2	BH-202			Υ	-	0.0-0.2	0.9-1.1	1.9-2.9			
3	BH-203										
4	BH-204			Υ	-	0.0-0.2	0.9-1.1	1.9-2.9			
5		HA-201				0.0-0.2	0.9-1.1	1.9-2.9			
6		HA-202				0.0-0.2	0.9-1.1	1.9-2.9			
7			HAS-203						0.0-0.1	0.9-1.0	1.9-2.0
8			HAS-204						0.0-0.1	0.9-1.0	1.9-2.0
9			HAS-205						0.0-0.1	0.9-1.0	1.9-2.0
10			HAS-206						0.0-0.1	0.9-1.0	1.9-2.0
11			HAS-206a						0.0-0.1	0.9-1.0	1.9-2.0
12			HAS-207						0.0-0.1	0.9-1.0	1.9-2.0
13			HAS-207a						0.0-0.1	0.9-1.0	1.9-2.0
14			HAS-208						0.0-0.1	0.9-1.0	1.9-2.0
15			HAS-208a						0.0-0.1	0.9-1.0	1.9-2.0
16			HAS-209						0.0-0.1	0.9-1.0	1.9-2.0
17			HAS-209a						0.0-0.1	0.9-1.0	1.9-2.0
18			HAS-210						0.0-0.1	0.9-1.0	1.9-2.0
19			HAS-210a						0.0-0.1	0.9-1.0	1.9-2.0
20			HAS-211						0.0-0.1	0.9-1.0	1.9-2.0
21			HAS-211a						0.0-0.1	0.9-1.0	1.9-2.0
22			HAS-212						0.0-0.1	0.9-1.0	1.9-2.0
23			HAS-212a						0.0-0.1	0.9-1.0	1.9-2.0
24			HAS-213						0.0-0.1	0.9-1.0	1.9-2.0
25			HAS-213a						0.0-0.1	0.9-1.0	1.9-2.0
26			HAS-214						0.0-0.1	0.9-1.0	1.9-2.0
27			HAS-214a						0.0-0.1	0.9-1.0	1.9-2.0
28			HAS-215						0.0-0.1	0.9-1.0	1.9-2.0
29			HAS-215a						0.0-0.1	0.9-1.0	1.9-2.0
30			HAS-216						0.0-0.1	0.9-1.0	1.9-2.0
31			HAS-216a						0.0-0.1	0.9-1.0	1.9-2.0
32			HAS-217		1				0.0-0.1	0.9-1.0	1.9-2.0

33			HAS-217a						0.0-0.1	0.9-1.0	1.9-2.0
_										 	
B- Stre	am Crossin	igs									
B1- Oratia	Bridge										
34	BH-251			Υ	-	0.0-0.2	0.9-1.1	1.9-2.9			
35	BH-252			Υ	-	0.0-0.2	0.9-1.1	1.9-2.9			
B2- Opanı	ıku Stream Brid	ge									
36	BH-253					0.0-0.2	0.9-1.1	1.9-2.9			
37		HA-254				0.0-0.2	0.9-1.1	1.9-2.9			
38		HA-255				0.0-0.2	0.9-1.1	1.9-2.9			
39	BH-256					0.0-0.2	0.9-1.1	1.9-2.9			
B3- Parem	nuka Bridge										
40	BH-257			Υ	-	0.0-0.2	0.9-1.1	1.9-2.9			
41	BH-258	(possible HA)				0.0-0.2	0.9-1.1	1.9-2.9			
42		HA-259				0.0-0.2	0.9-1.1	1.9-2.9			
43		HA-260				0.0-0.2	0.9-1.1	1.9-2.9			
44	BH-261					0.0-0.2	0.9-1.1	1.9-2.9			
45		HA-262				0.0-0.2	0.9-1.1	1.9-2.9			
	uck & Woodsid	e Bridge									
46	BH-263			Υ	-	0.0-0.2	0.9-1.1	1.9-2.9			
47	BH-264					0.0-0.2	0.9-1.1	1.9-2.9			
	Road Stream										
48	BH-265			Υ	Y	0.0-0.2	0.9-1.1	1.9-2.9			
49		HA-266				0.0-0.2	0.9-1.1	1.9-2.9			
50		HA-267				0.0-0.2	0.9-1.1	1.9-2.9			
Total Dise	<u> </u>			0			<u> </u>				
Total Piezo				8	2			+		 	-
	ndwater sample	es T			2					<u> </u>	
Total soil s	•						66				
Total sedii	ment samples									81	

2- Laboratory Testing Programme: SOIL

Item	Machine	Hand Auger		Soil Samples F		Parameters to be	tested (see Sampling N	lethodology Document)	
	Boreholes	Boreholes		Depth	(m bgl)				
						Metals (1)	TPH (2)	PaH (3)	OCP (4)
A- Advanc	ed Works								
1a	BH-201			0.0-0.2		Υ	Υ	Υ	Υ
1b					0.9-1.1	Υ	Υ	Υ	
2a	BH-202			0.0-0.2		Y	Y	Υ	Υ
2b					0.9-1.1	Y	Υ	Υ	

4a	BH-204		0.0-0.2		Υ	Υ	Υ	Υ
4b				0.9-1.1	Υ	Υ	Y	
B- Stream	Crossings							
B1- Oratia	Bridge							
34a	BH-251		0.0-0.2		Υ	Υ	Y	Υ
B2- Opanu	 	re l						
37a		HA-254	0.0-0.2		Υ	Υ	Υ	Υ
37b				0.9-1.1	Υ	Υ	Υ	Υ
38a		HA-255	0.0-0.2		Υ	Υ	Y	Y
B3- Parem	uka Bridge							
42a		HA-259	0.0-0.2		Υ	Υ	Υ	Υ
43a		HA-260	0.0-0.2		Υ	Υ	Υ	Υ
				0.9-1.1	Υ	Υ	Y	Y
B4- Don Bı	 uck & Woodside	Bridge						
46a	BH-263		0.0-0.2		Υ	Υ	Y	Y
B5- Bush R	Road Stream							
49a		HA-266	0.0-0.2		Υ	Υ	Y	Y
Total soil s	amples for Testi	ing	1	1.5				

Notes:

1) Metals: Arsenic, Cadmium, Chromium (total), Copper, Lead, Nickel and Zinc, plus Mercury

2) TPH = Total Petroleum Hydrocarbons

3) PaH = Polycyclic Aromatic Hydrocarbons

4) OCP = Organochlorine Pesticides

3- Laboratory Testing Programme: SEDIMENT

Item	Machine	Hand Auger	Hand Auger	Sediment Sample	!		Parameters to be	Tested (see Sampling	Methodology	Document)	
	Boreholes	Boreholes	Boreholes	Depth (m bgl)								Ecology
			+ Scalas			Metals (1)	TPH (2)	PaH (3)	OCP (4)	TBT (5)	TOC (6)	Metals (7)
A- Advanc	ed Works											+
10a			HAS-206	0.0-0.1		Υ	Υ	Υ	Y	Υ	Υ	Υ
19a			HAS-210a	0.0-0.1		Υ	Υ	Υ	Υ	Υ	Υ	Υ
19b					0.9-1.0	Υ	Υ	Υ				
20a			HAS-211	0.0-0.1		Υ	Υ	Υ			Υ	Υ
23a			HAS-212a	0.0-0.1		Υ	Υ	Υ	Y	Y	Υ	Υ
23b					0.9-1.0	Y	Υ	Υ	Y	Y		
24a			HAS-213	0.0-0.1		Y	Υ	Υ			Υ	Υ
27a			HAS-214a	0.0-0.1		Υ	Υ	Υ	Υ	Υ	Υ	Υ
27b					0.9-1.0	Υ	Υ	Υ	Υ	Υ		

28a		HAS-215		0.0-0.1		Υ	Υ	Υ			Υ	Υ
31a		HAS-216a		0.0-0.1		Υ	Υ	Υ	Υ	Υ	Υ	Υ
31b					0.9-1.0	Υ	Υ	Υ	Υ	Υ		
32a		HAS-217		0.0-0.1		Υ	Υ	Υ			Υ	Υ
Total sedir	ment samples for test	ting		1	3							

Notes:

- 1) Metals: Arsenic, Cadmium, Chromium (total), Copper, Lead, Nickel and Zinc, plus Mercury
- 2) TPH = Total Petroleum Hydrocarbons
- 3) PaH = Polycyclic Aromatic Hydrocarbons
- 4) OCP = Organochlorine Pesticides
- 5) TBT = Tributyl Tin
- 6) TOC = Total Organic Carbon
- 7) Ecology Metals: These shall be in accordance with the document Auckland Regional Council Technical Publication (TP) No. 168, August 2004. (this publication uses Environmental Response Criteria and R J Hill Laboratories in Hamilton can undertake these tests accordingly)

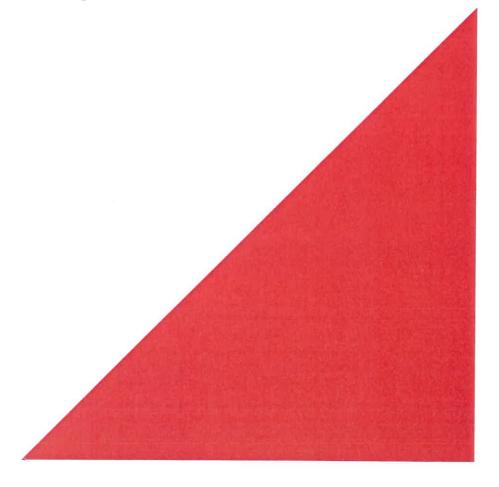
4- Laboratory Testing Programme: GROUNDWATER

Item	Machine	Hand Auger	Hand Auger	Piezo	Gw sample?	Para	meters to be te	sted
	Boreholes	Boreholes	Boreholes					
			+ Scalas			Dissolved	TPH	PaH
						Metals (1)		
A- Advanc	ed Works							
1	BH-201			Υ	Υ	Υ	Υ	Y
48	BH-265			Υ	Y	Υ	Υ	Υ
Total grou	ndwater sample	es for testing			2			

Notes:

- 1) Dissolved metals: Arsenic, Cadmium, Chromium (total), Copper, Lead, Nickel and Zinc, plus Mercury
- 2) The level of detection limit, for dissolved metals, shall be 'trace' level as offered by R J Hill Laboratories in Hamilton

APPENDIX E ENVIRONMENTAL SAMPLING AND TESTING REPORT (OPUS, 2014A)



Watercare

NH2 Watermain Greenhithe and Stream Crossings

Environmental Sampling and Testing Report

August 2014

Watercare

NH2 Watermain

Greenhithe and Stream Crossings

Environmental Sampling and Testing Report

August 2014

Prepared By

Tom Van Deelen

Engineering Geologist

Roger High Engineering Geologist Opus International Consultants Ltd Auckland Civil

The Westhaven, 100 Beaumont St PO Box 5848, Auckland 1141 New Zealand

Reviewed By

Roger High

Principal – Engineering Geology

Telephone:

+64 9 355 9500

Facsimile:

+64 9 355 9585

imospai Engineering Geology

Date:

Project No

21/08/2014 1-C0935.50

Reference:

Opus Report GS14/091

Status:

Issue 1 for Watercare

Approved for Release By

> Michael Fox Project Manager

Document Status

Revision Number	Date	Amended Section	Author	Description
0	11/08/14	N/A	T Van Deelen, R High	Draft for Internal Review
1	21/08/14	All	T Van Deelen, R High	Issue 1 for Watercare

Contents

Sc	pe of this Investigation2
	npling Methodology3
3.1 3.2	Soil Sampling Methodology
კ.∠ 3.3	Sediment Sampling Methodology
00	7 6
Sa	nple Testing4
	nple Testing4 Ality Assurance and Quality Control (QA/QC)

Appendices

- 1 Plans
- 2 Hill Laboratories Analysis Records
- 3 Marine Sediment Particle Size Plots

g:\tlas\rodney\projects\1-co210.00 co826 geotech-mlf\watercare\1-co935.50 nh2 advance works contamination\report\nh2 sampling and testing report.docx

1 Introduction

Watercare are proposing construction of the North Harbour No 2 watermain in the Greenhithe and Albany areas. Opus was engaged by Watercare to undertake geotechnical investigations of the new pipeline route in these areas. This report describes the sampling and environmental testing of materials obtained during these geotechnical investigations.

The work was briefed under the Geotechnical Professional Services Contract Co826, with reference to the URS/SKM Memorandum "NH2-Ground Contamination Sampling and Analysis" dated 7^{th} May 2014.

This brief was slightly amended a number of times as a result of email correspondence with Walter Starke (Jacobs SKM Environmental Engineer) and Brett Ogilvie (Tonkin and Taylor) prior to the start of works, and a number of interactive decisions made by Walter Starke during the field works.

2 Scope of this Investigation

The scope of this investigation was to sample and test contaminant levels in soil, intertidal sediment and groundwater samples. The sampling and testing was briefed by Jacobs SKM and Tonkin and Taylor during the geotechnical investigation of NH2 watermain in the Greenhithe and Albany areas.

The sampling and testing plans were provided in the URS/SKM Memorandum "NH2-Ground Contamination Sampling and Analysis" dated 7^{th} May 2014.

This report describes the samples able to be obtained during the field works and presents the contaminant test results of those samples selected for testing. Many samples were not tested and are presently held in cold storage at Hill Laboratories.

Logs of the bores and augers where environmental samples were obtained during the geotechnical field works are contained in Appendix B of the Opus Geotechnical Factual Report (GS14/089).

3 Sampling Methodology

The location of the field tests from which the samples were obtained are shown on the site plans in Appendix 1.

Table 1 at the end of this report (the Sampling Plan) describes the samples obtained during the investigation and details of sampling as briefed by URS/SKM.

Table 2 at the end of this report (the Sample Action Inventory) describes the sampling inventory and sampling dates; dates samples were sent to Hill Laboratories and whether samples were tested or held in cold storage.

Table 3 at the end of this report (the Laboratory Testing Schedule) details the samples selected for testing and the contaminant tests required for each sample.

Table 4 at the end of this report (the Soil Contamination Test Inventory) describes the soils, Hill Laboratories reference and testing undertaken.

3.1 Soil Sampling Methodology

Soil samples were obtained from rig bores and hand augers.

Sampling from bores involved removal of the outer part of the core using a clean stainless steel knife and placing the inner part of the core into sampling containers.

Sampling from hand augers involved auguring using a 70mm diameter head down to the target depth and then obtaining the sample using a dedicated 50mm diameter head, in order to minimize the potential for cross contamination caused by contact of the auger head with soils other than at the target sampling depth. The 50mm head was washed with Decon 90^{TM} and water prior to sampling.

The soil samples were placed into Hill Laboratories supplied sample containers and stored in a cooled chilly bin. The sample jars were then stored in a fridge prior to courier overnight to Hill Laboratories.

3.2 Sediment Sampling Methodology

A number of methods were used to obtain samples of the inter-tidal sediments:

- The 0.00-0.02m sediment sample for "Ecology Metals" was obtained using a stainless steel
 trowel in broad accordance with the recommendations in ARC TP 168 (2004) "Blueprint for
 monitoring urban receiving environments". Replication and sub-sampling were not
 undertaken;
- Deeper samples in non-collapsing sediment were obtained using a 50mm diameter hand auger as described for the soil samples above;
- Deeper samples in collapsing sediment were obtained using a piston sampler.

All sediment samples were placed into Hill Laboratories supplied sample containers and stored in a cooled chilly bin. The sample jars were then stored in a fridge prior to courier overnight to Hill Laboratories.

3.3 Groundwater Sampling Methodology

The groundwater in each borehole was sampled using a hand-held Waterra footvalve with a dedicated 16mm diameter tube.

Prior to sampling the groundwater, the boreholes were purged of three times the water volume of the bore, in order to ensure that the groundwater sample taken was representative of the groundwater aquifer.

After purging, samples were poured into laboratory supplied sample jars, field filtered for heavy metals, placed in a cooled chilly bin, and then transferred to a fridge prior to over-night courier transport to Hill Laboratories.

4 Sample Testing

The samples selected for testing and those held in cold storage at Hill Laboratories are shown in Table 2 at the end of this report. Departures of the testing from the original brief are shown in Table 3 at the end of this report and descriptions of samples and tests undertaken are shown on the test inventory in Table 4 at the end of this report.

Most tests were undertaken to comply with the original brief in the URS/SKM Memorandum "NH2-Ground Contamination Sampling and Analysis" dated 7th May 2014. A notable exception is the tests for "Ecology Metals". Hill Laboratories are not IANZ certified for this test, as required by the brief, and testing was not undertaken as per TP 168¹, again as required by the brief. The main departures of the test method to that described in TP 168 are:

- Total recoverable HM, PAH and TOC tests were undertaken on the whole sample as received, and not the <500µm faction²;
- Quantification of the >500 μ m, 500-250 μ m, 250-125 μ m, 125-63 μ m and <63 μ m fractions of the sediment samples were not determined³;
- The whole sample was air-dried at 35°C overnight and not freeze dried before testing4.

It is acknowledged that Brett Ogilvie verbally advised that TOC, PAH, and TBT should be undertaken on each sediment sample tested for "Ecology metals", however TBT was only undertaken on 5 of the 9 samples tested for "Ecology metals" (Table 4), as per the original URS/SKM brief (Table 3).

¹ ARC TP 168: "Blueprint for monitoring urban receiving environments", August 2004

² In fact most samples are less than 500 microns, other than for some shell particles.

³ PSD plots of marine sediments, reported in Opus Report GS 14/089, at the same site as some of the samples obtained for "ecology metal" tests are included in Appendix 3. Note that the depth of sampling differs from that for the ecology metal tests.

⁴ Hill Laboratories do not undertake freeze drying. The former ARC considered air drying as an acceptable alternative.

Soil test results are shown in the Hill Laboratories Analysis Report Nos 1280093, 1283722, 1289075, 1293375, and 1297663 in Appendix 2. Groundwater test results are shown in the Hill Laboratories Analysis Report 1308993 in Appendix 2.

5 Quality Assurance and Quality Control (QA/QC)

Sampling was undertaken by Tom Van Deelen (Engineering Geologist) between May and July 2014. All samples were couriered overnight to Hill Laboratories in Hamilton. A Chain of Custody Record was received.

RJ Hill Laboratories is an IANZ accredited laboratory and undertakes its own QA. This lab is IANZ accredited to undertake all tests undertaken for this investigation with the exception of the ecology metals and total organic carbon tests.

5.1 Field Replicate Sample

The sampling and testing brief required sampling and testing of a field replicate at a rate of one every ten samples tested. Subsequently Brett Ogilvie (Tonkin and Taylor) verbally advised that replicates for the samples obtained from 0.0-0.02m depth were not required (in contrast to the 3 replicates per site required in Figure 3.3 of TP168). Walter Starke (Jacobs) was advised of this matter by email dated the 9^{th} May 2014.

A total of 17 samples were tested other than the sediment from 0.0m – 0.02m depth (Table 4). Accordingly 1 field replicate was tested: BH201 – 1.0m depth (Hill Lab Ref 1289075.7) and replicate labelled 10m depth (Hill Lab Ref 1289075.7).

5.2 Laboratory Replicate Testing

The brief did not require laboratory replicate testing, therefore no laboratory replicate tests were undertaken for this project.

6 Limitations

This report has been prepared solely for the use of Watercare and their agents. This report is not suitable for any other circumstances than the purpose for which it was prepared. This report has been prepared for the purpose of providing sampling and testing results for the NH2 project.

Opus accepts no responsibility or liability for:

- The consequences of this document being used for purposes other than for which it was commissioned and,
- This report being used by any other party other than the organisation by whom it was commissioned.

The sampling and testing requirements were determined by other parties. The results presented in the report are relevant to the date that the work was undertaken, and should not be relied on to represent conditions at later dates. Conditions of the site may change over time due to natural processes and anthropogenic activities.

Opus International Consultants shall not be liable for any loss or damage, directly or indirectly arising out of, resulting from, in consequence of, contributed to or aggravated by asbestos in whatever form or quality.

Table 1: NH2 Sampling Plan

Field Test Undertaken
Sample Obtained from Proposed Depth Range
Proposed Sample not Obtained

I				Soil Samples		Sediment Samples							
ltem	Rig Bores	Hand Augers		Depth (m bgl									
A- Adva	anced Wo	rks		Jepan (m bgr	/		Depth (m bgl						
						-							
1	BF 201		0.0-0.2	0.9-1.1	1010								
2	BH-202		0.0-0.2	0.9-1.1	1.9-2.9								
3	Б11-203		0.0 0.2	0.5-1.1	1.9-2.9			-					
4	BH-204		0.0-0.2	0.9-1.1	1.9-2.9	-	+						
5	The second second second	HA-201	0.0-0.2	0.9-1.1	1.9-2.9			-					
6		HA-202	0.0-0.2	0.9-1.1	1.9-2.9			 					
7		HAS-203			ediment	0.0-0.1	0.9-1.0	1,9-2,0					
8		HAS-204			e not sediment	0.0-0.1	0.9-1.0	1.9-2.0					
9		HAS-205	N .			0.0-0.1	0.9-1.0	1.9-2.0					
10		HAS-206				0.0-0.1	0.9-1.0	1.9-2.0					
11		HAS-206a				0.0-0.1	0.9-1.0	1.9-2.0					
12		HAS-207				0.0-0.1	0.9-1.0	1.9-2.0					
13		HAS-207a		site under w	ater at all tides	0.0-0.1	0.9-1.0	1.9-2.0					
14		HAS-208				0.0-0.1	0.9-1.0	1.9-2.0					
15		HAS-208a				0.0-0.1	0.9-1.0	1.9-2.0					
16		HAS-209				0.0-0.1	0.9-1.0	1.9-2.0					
17		HAS-209a				0.0-0.1	0.9-1.0	1.9-2.0					
18		HAS-210				0.0-0.1	0.9-1.0	1.9-2.0					
19	<u> </u>	HAS-210a				0.0-0.1	0.9-1.0	1.9-2.0					
20		HAS-211				0.0-0.1	0.9-1.0	1.9-2.0					
21		HAS-211a				0.0-0.1	0.9-1.0	1.9-2.0					
22		HAS-212				0.0-0.1	0.9-1.0	1.9-2.0					
23		HAS-212a				0.0-0.1	0.9-1.0	1.9-2.0					
25		HAS-213				0.0-0.1	0.9-1.0	1.9-2.0					
26		HAS-213a				0.0-0.1	0.9-1.0	1.9-2.0					
27		HAS-214				0.0-0.1	0.9-1.0	1.9-2.0					
28		HAS-214a				0.0-0.1	0.9-1.0	1.9-2.0					
29		HAS-215 HAS-215a				0.0-0.1	0.9-1.0	1.9-2.0					
30		HAS-216				0.0-0.1	0.9-1.0	1.9-2.0					
31		HAS-216a				0.0-0.1	0.9-1.0	1.9-2.0					
32		HAS-210a				0.0-0.1	0.9-1.0	1.9-2.0					
33		MAS-2176				0.0-0.1	0.9-1.0	1.9-2.0					
		11/13/21/6		13		0.0-0.1	0.9-1.0	1.9-2.0					
3- Stron	m Crossin	ac		15			36						
Jucai	III CI USSIII	gs											
1 Orntin B	-1-1												
34	BH-251												
35	THE RESERVE THE PARTY OF THE PA		0.0-0.2	0.9-1.1	1.9-2.9	deep samples	not obtained - hy	/droexcavated					
33	BH-252		0.0-0.2	0.9-1.1	1.9-2.9	deep samples	not obtained - hy	droexcavated					
2- Opanuki	u Stream Bridg												
36	BH-253	50	0.0.0.3	0011	4.0								
37	W11-4-12	HA-254	0.0-0.2	0.9-1.1	1.9-2.9								
38		HA-255	0.0-0.2	0.9-1.1	1.9-2.9								
39	BH-256	14-6-4-3	0.0-0.2	0.9-1.1	1.9-2.9								
- Land	Control of the same of the		0.0-0.2	0.9-1.1	1.9-2.9								
3- Paremuk	a Bridge												
40	BH-257		0.0-0.2	0.0.1.1	1020								
41	BH-258	(possible HA)	0.0-0.2	0.9-1.1 0.9-1.1	1.9-2.9								
42		HA 259	0.0-0.2	0.9-1.1	1.9-2.9 1.9-2.9								
43		HA-260	0.0-0.2	0.9-1.1									
44	BH-251	The second second	0.0-0.2	0.9-1.1	1.9-2.9 1.9-2.9								
45		HA-262	0.0-0.2	0.9-1.1	1.9-2.9								
	ie.		0.0 0.2	0.5 1.1	1.3-2.5								
- Don Buck	& Woodside	Bridge											
46	BH-263		0.0-0.2	0.9-1.1	1.9-2.9								
7U	BH-264		0.0-0.2	0.9-1.1	1.9-2.9								
47				5.5 1.1	1.3 2.3								
						1							
	d Stream												
47	d Stream		0.0-0.2	0.9-1.1	1.9-2.9								
47 5- Bush Roa	Target Control of the	HA-266	0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1	1.9-2.9								
47 5- Bush Roa 48	Target Control of the	HA-266 HA-267		0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9								

Table 2: Watercare NH2 Sample Action Inventory

I.D Sample Depth		Date Sampled	Time Sampled	Date to Lab	Reference Number	Results Received			
	0.1	19/05/2014	10am		1280093.4	see Table 4			
BH263	1.0	19/05/2014	10.10am	26/05/2014	1280093.14	See Tuble 4			
	2.5	19/05/2014	12.30pm	1 '	1280093.15	HELD			
	0.1	20/05/2014	12.05pm		1280093.5				
BH264	1.0	20/05/2014	12.07pm	26/05/2014	1280093.6	HELD			
	2.2	20/05/2014	12.09pm	1 ' '	1280093.7	1 11220			
	0.1	22/05/2014	2.35pm		1280093.11				
BH253	1.0	22/05/2014	2.36pm	26/05/2014	1280093.12	HELD			
	2.0	22/05/2014	2.38pm	1	1280093.13	1111111			
	0.1	22/05/2014	3.37pm		1280093.1	see Table 4			
HA254	1.1	22/05/2014	3.38pm	26/05/2014	1280093.2	see Table 4			
	2.2	22/05/2014	3.39pm	.,,	1280093.8	HELD			
	0.1	23/05/2014	12.20pm		1280093.3	see Table 4			
HA255	1.1	23/05/2014	12.21pm	26/05/2014	1280093.5	see rable 4			
	2.2	23/05/2014	12.22pm		1280093.5	HELD			
	0.1	26/05/2014	9.52am		1293375.1				
BH256	1.0	26/05/2014	9.59am	30/06/2014	1293375.1	HELD			
	2.5	26/05/2014	11.45am	30,00,2014	1293375.3	HELD			
	0.1	28/05/2014	2.30pm		1283722.1	Table 4			
BH202	1.0	28/05/2014	2.31pm	4/06/2014		see Table 4			
	2.1	28/05/2014	2.33pm	4/00/2014	1283722.2	see Table 4			
	0.1	28/05/2014	2.52pm		1283722.3	HELD			
HA219	1.0	28/05/2014	2.53pm	additional sam	ples obtained - not in	11515			
	2.0	28/05/2014	2.53pm	sam	pling plan	HELD at Opus			
	0.1	28/05/2014	3.13pm						
HA218	1.0	28/05/2014	3.14pm	additional sam	ples obtained - not in	LIEU D			
	2.0	28/05/2014	3.15pm	sam	pling plan	HELD at Opus			
	0.1	29/05/2014	12.41pm		1202722.4				
HA201	1.0	29/05/2014	12.42pm	4/06/2014	1283722.4				
	2.0	29/05/2014	12.42pm	4/00/2014	1283722.5	HELD			
	0.1	29/05/2014	12.43pm		1283722.6				
HA203	1.0	29/05/2014	12.44pm	4/06/2014	1283722.7				
	2.0	29/05/2014	12.44pm	4/06/2014	1283722.8	HELD			
HA202	0.1	30/05/2014	12.03pm	4/06/2014	1283722.9	LIELD			
	0.1	5/06/2014	1.28pm	4/06/2014	1283722.10	HELD			
BH204	1.0	5/06/2014	1.29pm	17/06/2014	1289075.1	see Table 4			
	2.0	5/06/2014		17/06/2014	1289075.2	see Table 4			
	0.1 (x2 Dup)	9/06/2014	1.30pm 10.34am		1289075.3	HELD			
BH201	1.0	9/06/2014	10.36am	17/06/2014	1289075.4, 7	see Table 4			
	2.0	9/06/2014	10.37am	17/06/2014	1289075.5	see Table 4			
HA211	0.0 (x2)	11/06/2014	9.55am	17/05/2014	1289075.6	HELD			
HA211a	0.0 (x2)	11/06/2014	10.00am	17/06/2014 17/06/2014	1289075.17, 30	see Table 4			
	0.1	11/06/2014	2.00pm	17/06/2014	1289075.18	HELD			
BH265	1.0	11/06/2014	2.01pm	17/06/2014	1289075.8				
	1.9	11/06/2014		17/06/2014	1289075.9	HELD			
	0.0 (x2)	11/06/2014	2.03pm		1289075.10				
HA204 -	0.8	12/06/2014	3.10pm	17/06/2014	1289075.19	HELD			
	0.0 (x2)	12/06/2014	11.25am		1289075.20				
HA205	0.6	12/06/2014	9.45am	17/06/2014	1289075.21	HELD			
	0.0 (x2)	12/06/2014	11.45am		1289075.22				
HA206	0.6		12.15pm	17/06/2014 -	1289075.23, 31	see Table 4			
	0.0 (x2)	12/06/2014 12/06/2014	12.35pm		1289075.24	HELD			
HA206a	0.6		2.35pm	17/06/2011	1289075.25				
	0.9	12/06/2014	2.57pm	17/06/2014	1289075.26	HELD			
11A200a	U.5		12/06/2014 2.55pm		1289075.27				
	0.0 (22)			17/06/2014	1289075.28, 32	see Table 4			
HA212a	0.0 (x2)	13/06/2014	11.00am			see rable 4			
	0.0 (x2)	13/06/2014	11.05am	17/06/2014	1289075.29	HELD			
HA212a HA212	0.0 (x2) 0.1	13/06/2014 13/06/2014	11.05am 3.00pm	17/06/2014	1289075.29 1289075.11				
HA212a	0.0 (x2)	13/06/2014	11.05am		1289075.29				

HA213a	0.0 (x2)	13/06/2014	10.45am	30/06/2014	1293375.4	HELD		
HA213	0.0 (x2)	13/06/2014	2.30pm	30/06/2014	1293375.5, 22	see Table 4		
	0.1	17/06/2014	10.38am		1289075.14			
BH258	1.0	17/06/2014	10.40am	17/06/2014	1289075.15	HELD		
	2.0	17/06/2014	10.41am	7	1289075.16	1		
HA259 -	0.1	23/06/2014	12.50pm	20/05/2014	1293375.6	see Table 4		
117(233	1.0	23/06/2014	12.51pm	30/06/2014	1293375.7	HELD		
	0.1	23/06/2014	1.56pm		1293375.8	see Table 4		
HA260	1.0	23/06/2014	1.58pm	30/06/2014	1293375.9	see Table 4		
	2.0	23/06/2014 1.59pm			1293375.10	HELD		
HA217a	0.0 (x2)	24/06/2014	10.06am	30/06/2014	1293375.12	HELD		
HA217	0.0 (x2)	24/06/2014	10.10am	30/06/2014	1293375.11, 23	see Table 4		
HA210a -	0.0 (x2)	24/06/2014	11.30am	20/05/2014	1293375.13	see Table 4		
11112200	0.5	24/06/2014	11.30am	30/06/2014	1293375.14	see Table 4		
HA210	0.0 (x2)	24/06/2014	12.35pm	30/06/2014	1293375.15	HELD		
HA215	0.0 (x2)	25/06/2014	10.10am	30/06/2014	1293375.16, 25	see Table 4		
HA215a	0.0 (x2)	25/06/2014	10.15am	30/06/2014	1293375.17	HELD		
HA207	0.0 (x2)	25/06/2014	11.45am	30/06/2014	1293375.18	HELD		
HA214	0.0 (x2)	25/06/2014	12.10pm	30/06/2014	1293375.19	HELD		
HA214a	0.0 (x2)	25/06/2014	12.21pm	30/06/2014	1293375.20, 26	see Table 4		
HA209a	0.0 (x2)	26/06/2014	2.45pm	10/07/2014	1297663.6			
TIAZOSU	0.9	26/06/2014	2.45pm	10/07/2014	1297663.7	HELD		
HA209	0.0 (x2)	26/06/2014	3.37pm	10/07/2014	1297663.5	see Table 4		
HA213a	0.8	27/06/2014	2.30pm	10/07/2014	1297663.10	HELD		
HA216	0.0 (x2)	30/06/2014	2.30pm	10/07/2014	1297663.8	HELD		
HA216a	0.0 (x2)	30/06/2014	2.35pm	10/07/2014	1297663.9	HELD		
HA208	0.0 (x2)	1/07/2014	8.41am	10/07/2014	1297663.1, 25	see Table 4		
11/1200	0.7	1/07/2014	9.10am	10/07/2014	1297663.2	HELD		
HA208a	0.0 (x2)	1/07/2014	8.42am	10/07/2014	1297663.3	HELD		
	0.1	1/07/2014	2.31pm		1297663.18			
BH261	1.0	1/07/2014	2.33pm	10/07/2014	1297663.19	HELD		
	2.0	1/07/2014	2.34pm	Γ	1297663.20			
	0.1	2/07/2014	11.15am		1297663.11	see Table 4		
HA266	1.0	2/07/2014	11.16am	10/07/2014	1297663.12			
	2.0	2/07/2014	11.17am		1297663.13	HELD		
	0.1	2/07/2014	11.41am		1297663.14			
HA267	1.0	2/07/2014	11.49am	10/07/2014	1297663.15	HELD		
	2.0	2/07/2014	11.50am		1297663.16			
	0.1	3/07/2014	10.43am		1297663.21			
HA262	1.0	3/07/2014	10.44am	10/07/2014	1297663.22	HELD		
	2.0	3/07/2014	10.45am		1297663.23			
BH251	0.1	3/07/2014	11.00am	10/07/2014	1297663.17	see Table 4		
BH252	0.1	3/07/2014	11.10am	10/07/2014	1297663.24	HELD		

Table 3- Laboratory Testing

Field Test Undertaken
Sample Obtained from Proposed Depth Range

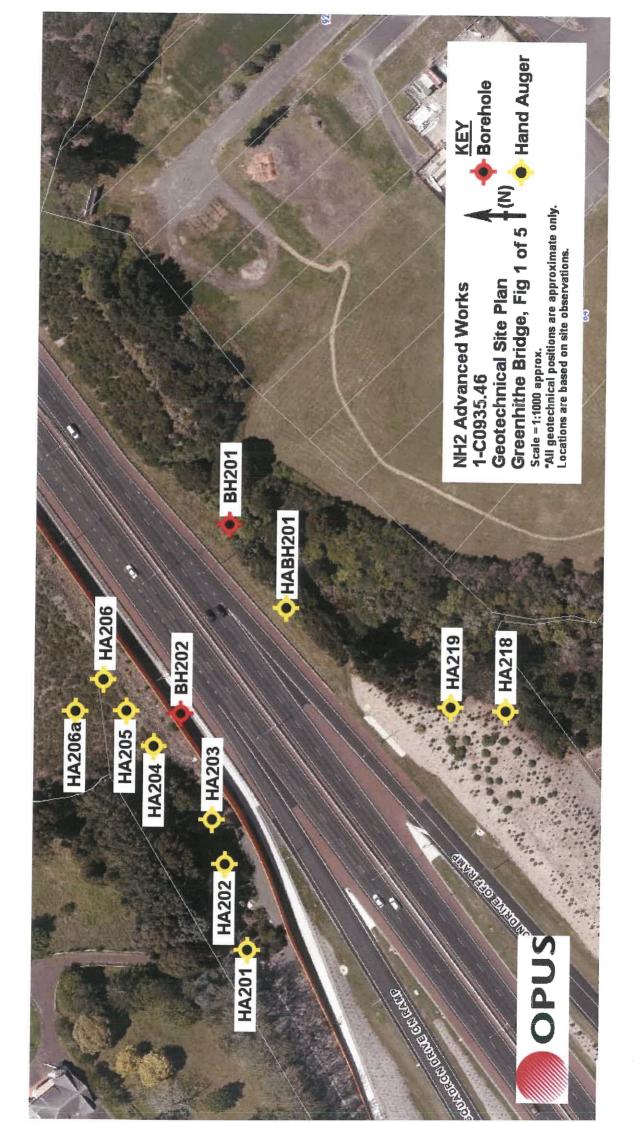
Proposed Sample not Obtained and/or Tested Alternative Field Test / Sample to Brief

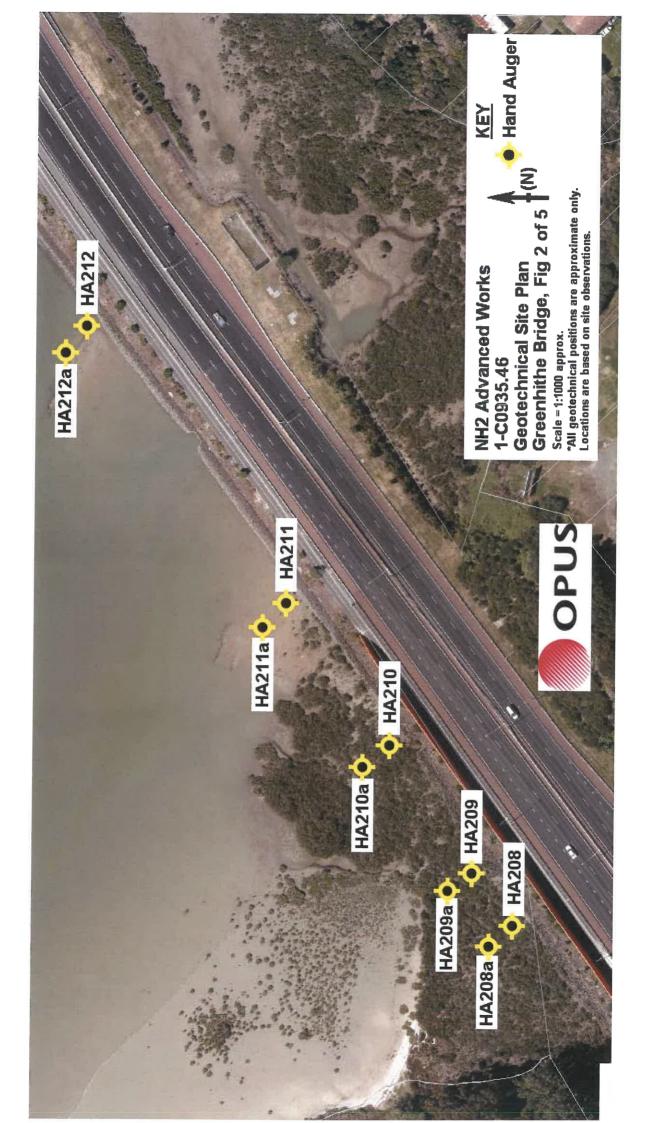
Item Rig Bore		Hand Augers	Soil S	Samples	Tested Parameters							
			Depth	n (m bgl)	Metals (1)	TPH (2)	PaH (3)	OCP (4)				
A- Adva	nced Wor	ks						,,,				
1a	580-201		0.0-0.2		Υ	Υ	Y	Y				
1b				0.9-1.1	Υ	Y	Υ					
2a	201-2013		0.0-0.2		Υ	Y	Υ	Υ				
2b				0.9-1.1	Υ	Υ	Y					
4a	BH-204		0.0-0.2		Υ	Υ	Y	Y				
4b				0.9-1.1	Y	Y	Υ					
B- Strea	m Crossin	gs										
B1- Oratia	Bridge			 								
34a	\$94.351		0.0-0.2		Y	Υ	Υ	Y				
32- Opanul	u Stream Bridg	ge										
37a		NV 304	0.0-0.2		Y	Υ	Y	Y				
37b				0.9-1.1	Υ	Y	Y	Y				
38a		HA-255	0.0-0.2		Y	Υ	Y	Y				
3- Paremu	ka Bridge											
42a		HA-259	0.0-0.2		Y	Y	Y					
43a		HA-260	0.0-0.2		Y	Y	Y	Y				
				0.9-1.1	Υ	Y	Y	Y				
4- Don Bud	k & Woodside	Bridge										
46a	B4-368		0.0-0.2		Υ	Υ	Υ	Y				
5- Bush Ro	ad Stream											
49a		F/A-238	0.0-0.2		Υ	Y	Y	Y				
otal soil sa	mples for Testi	ng	1	5								

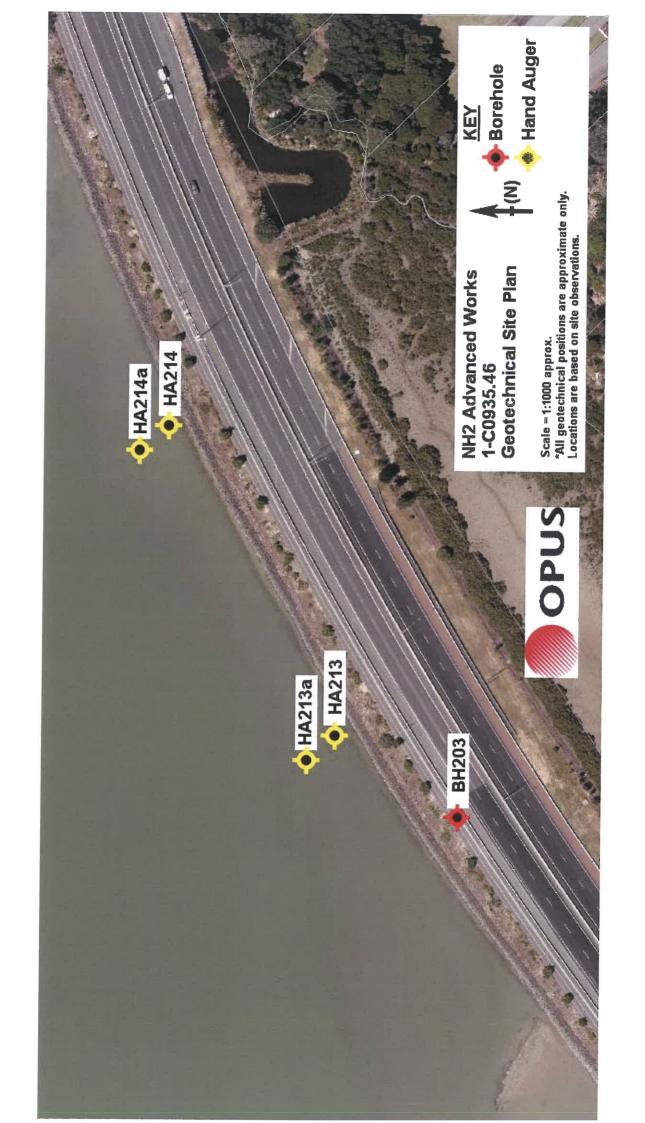
SEDIMENT

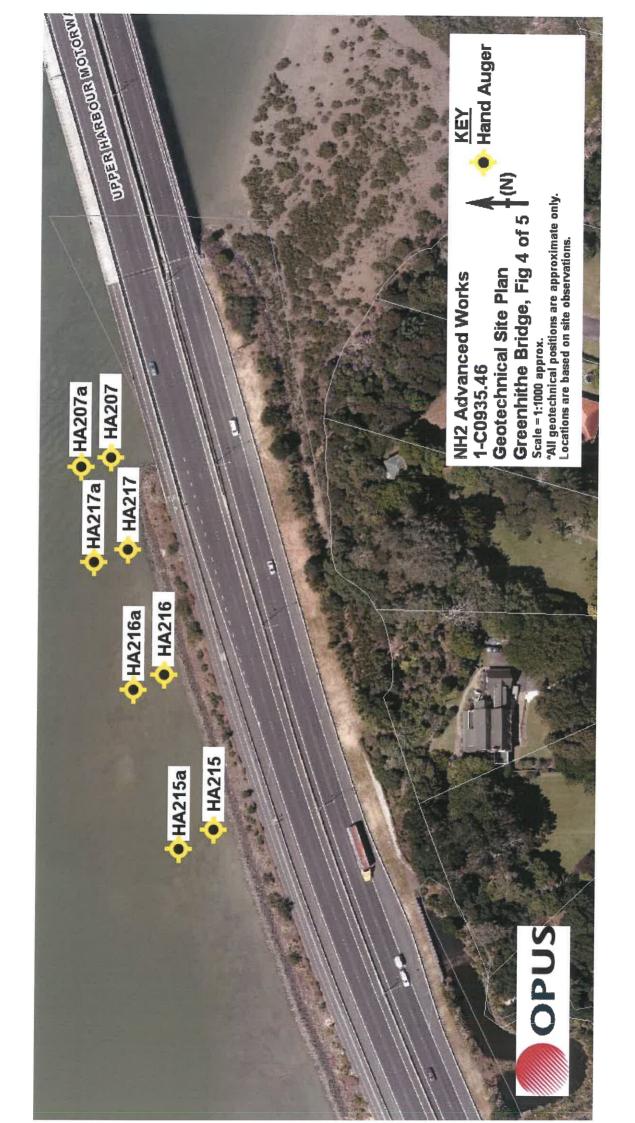
Item	Rig Bores	Hand Augers		nt Samples		Parameters to be Tested (see Sampling Methodology Document)									
			Depth	n (m bgl)	Metals	TPH	PaH	ОСР	ТВТ	тос	Ecology				
A- Advance	ed Works								+		Metals				
10a		HAS 206	0.0-0.1		Y		v								
31a		HAS 208	0.0-0.1		- '		V	ΥΥ	Y	Y	Y				
		HAS 209	0.0-0.1		- '		V	у	У	У	У				
19a		HAS 210a	0.0-0.1		· v	- Y	Y	у У	У	· ·	 				
19b		lan-		0.9-1.0	Ÿ		Y		Y	Y	Y				
20a		HAS 211	0.0-0.1		Y	Y	- 'v		+	Y					
23a		HAS 212a	0.0-0.1		Υ	Y	Y	Υ	Y	- '	Y				
23b				0.9-1.0					+	<u> </u>	Y				
24a		HAS 213	0.0-0.1		Y	Υ	Y				Y				
27a		MAS 2140	0.0-0.1		Υ	Y	Y -	Y	Y	V	Y				
27b				0.9-1.0					 	<u> </u>					
28a		Has ZIS	0.0-0.1		Υ	Υ	Υ			Y	Y				
31a		HAS 216a	0.0-0.1						 	'	'				
31b				0.9-1.0											
32a		MAS 217	0.0-0.1		Y	Υ	Υ			Υ	Y				
otal sedim	ent samples fo	r testing	11												
	lor testing			-											

GROUNDWATER


Item	Rig Bores	Piezometer	Parameters to be tested								
	Nig bores	Depth	Sol Metals _t	ТРН	PaH						
- Advanc	ed Works										
1	8H-201		Y	Υ	Y						
48	8H-265		Y	Y	Y						
otal grou	ndwater sample	es for testing		2							


Table 4: Watercare NH2 Soil Contamination Test Inventory


TBT										•			•			•	,	•										9
TOC				i						•	•		•		•	•	•	•	•	•								6
Ecology metals										•	•		•		•	•	•	•	•	•								6
ТРН	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
PAH	•	•	•	•	•	•	•	•	9	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
OCP	•		•	•	•	•		•	•	•	•	•	•			•		•			•	•	•	•	•	•	•	20
HM∻Hg	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
Soil Description	clayey silt	silty clay	silty clay	silt matrix in gravel	silt	clayey silt	silty clay	silt matrix in gravel	silt	sandy silt	silt	silt	silty clay	silty clay	fine - med sand	silty clay	silt	clayey silt	clayey silt	silty clay	silty clay	silty clay	silty clay	silty clay	silt	silty clay	silty clay	TOTAL
Unit	Fill	Fill	Fill	Fill	iii.	III	iii.	Fill	Fill	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Puketoka	Puketoka	Fill	Puketoka	Puketoka	Puketoka	Alluvium	
Report Date	18/07/2014	18/07/2014	18/07/2014	18/06/2014	18/06/2014	18/07/2014	18/07/2014	4/08/2014	9/06/2014	18/07/2014	4/08/2014	4/08/2014	21/07/2014	21/07/2014	18/07/2014	18/07/2014	21/07/2014	21/07/2014	21/07/2014	21/07/2014	9/06/2014	9/06/2014	9/06/2014	21/07/2014	21/07/2014	21/07/2014	4/08/2014	
Hill Ref	1289075.4	1289075.5	1289075.7	1283722.1	1283722.2	1289075.1	1289075.2	1297663.17	1280093.4	1289075.23, 31	1297663.1, 25	1297663.5	1293375.13, 24	1293375.14	1289075.17, 30	1289075.28, 32	1293375.5, 22	1293375.20, 26	1293375.16, 25	1293375.11, 23	1280093.1	1280093.2	1280093.3	1293375.6	1293375.8	1293375.9	1287663.11	
Q	BH201-0.1	BH201-1.0	BH201-1.0 ¹	BH202-0.1	BH202-1.0	BH204-0.1	BH204-1.0	BH251-0.1	BH263-0.1	HA206-0.0	HA208-0.0	HA209-0.0	HA210a-0.0	HA210a-0.5	HA211-0.0	HA212a-0.0	HAS213-0.0	HA214a-0.0	HA215-0.0	HA217-0.0	HA254-0.1	HA254-1.1	HA255-0.1	HA259-0.1	HA260-0.05	HA260-1.0	HA266-0.1	


 $^{^{1}}$ Duplicate labelled 10m (Hill Labs Ref #1289075.7)

Appendix 1 -Plans

Appendix 2 – Hill Labs Analysis Records

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

ANALYSIS REPORT

Page 1 of 2

SPv1

Client: Contact:

OPUS International Consultants

Mr Roger High

C/- OPUS International Consultants

PO Box 5848 AUCKLAND 1141 Lab No: Date Registered:

Date Reported: Quote No: Order No:

Client Reference:

Submitted By:

1283722 05-Jun-2014

18-Jun-2014 61048

Mr Roger High

Sample Type: Soil				THE STATE OF		
	Sample Name:	1	BH202 - 1.0m 28-May-2014 3:39			
	Lab Number:	pm 1283722.1	pm 1283722.2			
Individual Tests	Lab Hulliber.	1203722.1	1203722.2			
Dry Matter	g/100g as rcvd	84	74			
Heavy metals, screen As,Cd,			7 -		-	-
Total Recoverable Arsenic	mg/kg dry wt	< 2	< 2			
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10		-	-
Total Recoverable Chromium		6	7	121		-
Total Recoverable Copper	mg/kg dry wt	24	7		-	-
Total Recoverable Lead	mg/kg dry wt	7.2	16.5		-	-
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	-	-	ā
Total Recoverable Nickel	mg/kg dry wt	5	4			
Total Recoverable Zinc	mg/kg dry wt	71	16	-		_
Organochlorine Pesticides So		<u> </u>		10%	-	
Aldrin	mg/kg dry wt	< 0.010	< 0.010			
alpha-BHC	mg/kg dry wt	< 0.010	< 0.010			-
beta-BHC	mg/kg dry wt	< 0.010	< 0.010			-
delta-BHC	mg/kg dry wt	< 0.010	< 0.010	_		· · ·
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	< 0.010			-
cis-Chlordane	mg/kg dry wt	< 0.010	< 0.010	_		
trans-Chlordane	mg/kg dry wt	< 0.010	< 0.010			
Total Chlordane [(cis+trans)*	mg/kg dry wt	< 0.04	< 0.04	*	-	-
2,4'-DDD	mg/kg dry wt	< 0.010	< 0.010			
4,4'-DDD	mg/kg dry wt	< 0.010	< 0.010		16.) - }
2,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	-	-	-
4,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	-	-	
2,4'-DDT	mg/kg dry wt	< 0.010	< 0.010		-	
1,4'-DDT	mg/kg dry wt	< 0.010	< 0.010			-
Dieldrin	mg/kg dry wt	< 0.010	< 0.010		-	-
Endosulfan I	mg/kg dry wt	< 0.010	< 0.010	-		
Endosulfan II	mg/kg dry wt	< 0.010	< 0.010	_		
Endosulfan sulphate	mg/kg dry wt	< 0.010	< 0.010			
Endrin	mg/kg dry wt	< 0.010	< 0.010	-		-
Endrin aldehyde	mg/kg dry wt	< 0.010	< 0.010			
Endrin ketone	mg/kg dry wt	< 0.010	< 0.010	(<u>a</u>	-	-
Heptachlor	mg/kg dry wt	< 0.010	< 0.010	2	-	
leptachlor epoxide	mg/kg dry wt	< 0.010	< 0.010	255		
Hexachlorobenzene	mg/kg dry wt	< 0.010	< 0.010	04H 2 ●		
Methoxychlor	mg/kg dry wt	< 0.010	< 0.010	-	-	

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Si	ample Name:	BH202 - 0.1m 28-May-2014 3:38	BH202 - 1.0m 28-May-2014 3:39			
		pm	pm			
Polycyclic Aromatic Hydrocarbo	Lab Number:	1283722.1	1283722.2			
Acenaphthene	mg/kg dry wt	< 0.03	< 0.04			
Acenaphthylene	mg/kg dry wt	< 0.03		i#1	-	-
Anthracene	mg/kg dry wt	< 0.03	< 0.04) = :	-	
Benzo[a]anthracene			< 0.04	-		-
	mg/kg dry wt	< 0.03	< 0.04	*	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.03	< 0.04	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.03	< 0.04	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.03	< 0.04	-		
Benzo[k]fluoranthene	mg/kg dry wt	< 0.03	< 0.04	-		-
Chrysene	mg/kg dry wt	< 0.03	< 0.04	-	-	_
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.03	< 0.04	-	>=	123
Fluoranthene	mg/kg dry wt	< 0.03	< 0.04		: <u>-</u>	-
Fluorene	mg/kg dry wt	< 0.03	< 0.04	-	= 12	; - ;
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.03	< 0.04	8	-	-
Naphthalene	mg/kg dry wt	< 0.14	< 0.16		_	-
Phenanthrene	mg/kg dry wt	< 0.03	< 0.04	_	-	
Pyrene	mg/kg dry wt	< 0.03	< 0.04		-	_
Total Petroleum Hydrocarbons in	Soil					
C7 - C9	mg/kg dry wt	< 8	< 10	-		
C10 - C14	mg/kg dry wt	< 20	< 20	-	-	_
C15 - C36	mg/kg dry wt	< 40	< 40	10		
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	< 70			_

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil	Sample Type: Soil								
Test	Method Description	Default Detection Limit	Sample No						
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2						
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.010 - 60 mg/kg dry wt	1-2						
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1-2						
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082) Tested on dried sample	0.010 - 0.04 mg/kg dry wt	1-2						
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1-2						
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-2						

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

R J Hill Laboratories Limited | 1 Clyde Street Private Bag 3205

+64 7 858 2000 Tel +64 7 858 2001 Fax Email mail@hill-labs.co.nz Hamilton 3240, New Zealand | Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 4

SPv1

Client:

OPUS International Consultants

Contact: Mr Roger High

C/- OPUS International Consultants

PO Box 5848 **AUCKLAND 1141** Lab No: Date Registered:

Date Reported: Quote No:

Order No:

Client Reference:

Submitted By:

1289075

19-Jun-2014 18-Jul-2014

61048

Mr Roger High

Sample Type: Soil					F-174-75-75-1	
	Sample Name:	BH204 0.1m 05-Jun-2014 1:28 pm	BH204 1.0m 05-Jun-2014 1:29 pm	BH201 0.1m 09-Jun-2014 10:34 am	BH201 1.0m 09-Jun-2014 10:36 am	BH201 10m 09-Jun-2014 10:50 am
	Lab Number:	1289075.1	1289075.2	1289075.4	1289075.5	1289075.7
Individual Tests						
Dry Matter	g/100g as rcvd	79	78	77	75	77
Heavy metals, screen As,Cd,	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	3	3	3	3	3
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.11	< 0.10	0.11
Total Recoverable Chromium	mg/kg dry wt	17	14	7	14	9
Total Recoverable Copper	mg/kg dry wt	15	10	10	15	15
Total Recoverable Lead	mg/kg dry wt	40	7.0	14.2	8.3	16.1
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	17	8	6	9	11
Total Recoverable Zinc	mg/kg dry wt	25	16	31	17	33
Organochlorine Pesticides Sc	creening in Soil					
Aldrin	mg/kg dry wt	< 0.010	-	< 0.010	*	< 0.010
alpha-BHC	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
beta-BHC	mg/kg dry wt	< 0.010	-	< 0.010) *	< 0.010
delta-BHC	mg/kg dry wt	< 0.010		< 0.010	300	< 0.010
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
cis-Chlordane	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
trans-Chlordane	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	-	< 0.04		< 0.04
2,4'-DDD	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
4,4'-DDD	mg/kg dry wt	< 0.010	<u></u>	< 0.010	_	< 0.010
2,4'-DDE	mg/kg dry wt	< 0.010	ė,	< 0.010	-	< 0.010
4,4'-DDE	mg/kg dry wt	< 0.010		< 0.010		< 0.010
2,4'-DDT	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
4,4'-DDT	mg/kg dry wt	< 0.010	-	< 0.010	*	< 0.010
Dieldrin	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
Endosulfan I	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
Endosulfan II	mg/kg dry wt	< 0.010	-	< 0.010	= =	< 0.010
Endosulfan sulphate	mg/kg dry wt	< 0.010	-	< 0.010	9	< 0.010
Endrin	mg/kg dry wt	< 0.010		< 0.010	=	< 0.010
ndrin aldehyde	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
Endrin ketone	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
Heptachlor	mg/kg dry wt	< 0.010	~	< 0.010	-	< 0.010
leptachlor epoxide	mg/kg dry wt	< 0.010	*	< 0.010	-	< 0.010
Hexachlorobenzene	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
Methoxychlor	mg/kg dry wt	< 0.010		< 0.010		< 0.010

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

	Sample Name:		BH204 1.0m	BH201 0.1m	BH201 1.0m	BH201 10m
		05-Jun-2014 1:28 pm	05-Jun-2014 1:29 pm	09-Jun-2014 10:34 am	09-Jun-2014 10:36 am	09-Jun-2014
	Lab Number:		1289075.2	1289075.4	1289075.5	10:50 am 1289075.7
Polycyclic Aromatic Hydrocarbo					1200010.0	1209073.7
Acenaphthene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	mg/kg dry wt		< 0.03	< 0.03	< 0.03	< 0.03
Benzo[a]anthracene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	
Benzo[b]fluoranthene + Benzo[j fluoranthene		< 0.03	< 0.03	< 0.03	< 0.03	< 0.03 < 0.03
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo[k]fluoranthene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.03	< 0.03	< 0.03		< 0.03
Fluoranthene	mg/kg dry wt	0.03	< 0.03	0.03	< 0.03	< 0.03
Fluorene	mg/kg dry wt	< 0.03	< 0.03		< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene				< 0.03	< 0.03	< 0.03
Naphthalene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Naphthalene Phenanthrene	mg/kg dry wt	< 0.14	< 0.14	< 0.14	< 0.15	< 0.15
to a mean control of the control of	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pyrene	mg/kg dry wt	0.04	< 0.03	0.04	< 0.03	0.04
Total Petroleum Hydrocarbons i						
C7 - C9	mg/kg dry wt	< 9	< 9	< 9	< 9	< 9
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	< 40	< 40	< 40	< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	< 70	< 70	< 70	< 70
Sample Type: Sediment			ALCONO DE LA SOL			
S	ample Name:	HA211 0.0m	HA206 0.0m	HA212a 0.0m	HA211 0.0m	HA206 0.0m
		11-Jun-2014 9:55 am	12-Jun-2014 12:15 pm	13-Jun-2014 11:00 am	[63um Fraction]	[63um Fraction
	Lab Number:	1289075.17	1289075.23	1289075.28	1289075.30	1289075.31
Individual Tests						
Dry Matter	g/100g as rcvd	53	40	55	_	-
Extractable Copper*	mg/kg dry wt	-	-	-	22	20
Extractable Lead*						
	mg/kg dry wt	-			24	27
Extractable Zinc*	mg/kg dry wt mg/kg dry wt	-		-		27 110
Extractable Zinc* Total Organic Carbon*	mg/kg dry wt	0.99	4.0	- 1.56	24 89	27 110
Total Organic Carbon*	mg/kg dry wt g/100g dry wt	0.99	4.0	1.56		
	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg			1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8	7.3	- 1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	15.8 0.031	7.3 0.089	- 1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt	15.8 0.031 11.4	7.3 0.089 14.5	1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	15.8 0.031 11.4 11.7	7.3 0.089 14.5 19.6	1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	15.8 0.031 11.4 11.7 15.9	7.3 0.089 14.5 19.6 22	1.56		
Fotal Organic Carbon* Heavy metals, trace As,Cd,Cr,C Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Copper Fotal Recoverable Lead Fotal Recoverable Mercury	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081	7.3 0.089 14.5 19.6 22 0.117	1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081	7.3 0.089 14.5 19.6 22 0.117	- 1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Total Recoverable Zinc Teleavy metals, screen As,Cd,Cr,	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	- 1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	- 1.56		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Arsenic	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7			
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Heavy metals, screen As,Cd,Cr, Total Recoverable Cadmium Total Recoverable Cadmium Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7			
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Heavy metals, screen As,Cd,Cr, Total Recoverable Cadmium Total Recoverable Cadmium Total Recoverable Cadmium Total Recoverable Chromium	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	- - - - - - - 18 < 0.10		
Fotal Organic Carbon* Heavy metals, trace As,Cd,Cr,C Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Copper Fotal Recoverable Mercury Fotal Recoverable Mickel Fotal Recoverable Zinc Fotal Recoverable Arsenic Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Chromium Fotal Recoverable Copper	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	- - - - - - 18 < 0.10 22		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Mickel Total Recoverable Zinc Teavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Copper Total Recoverable Lead	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	 		
Total Organic Carbon* Heavy metals, trace As,Cd,Cr,C Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7			
Fotal Organic Carbon* Heavy metals, trace As,Cd,Cr,C Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Copper Fotal Recoverable Mercury Fotal Recoverable Mercury Fotal Recoverable Nickel Fotal Recoverable Zinc Fleavy metals, screen As,Cd,Cr,Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Copper Fotal Recoverable Copper Fotal Recoverable Lead Fotal Recoverable Lead Fotal Recoverable Mercury	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	18 < 0.10 22 18 29 0.10		
Fotal Organic Carbon* Heavy metals, trace As,Cd,Cr,C Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Lead Fotal Recoverable Mercury Fotal Recoverable Mercury Fotal Recoverable Nickel Fotal Recoverable Arsenic Fotal Recoverable Arsenic Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Chromium Fotal Recoverable Copper Fotal Recoverable Mercury Fotal Recoverable Nickel	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	18 < 0.10 22 18 29 0.10 7		
Fotal Organic Carbon* Heavy metals, trace As,Cd,Cr,C Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Copper Fotal Recoverable Lead Fotal Recoverable Mercury Fotal Recoverable Mickel Fotal Recoverable Zinc Fleavy metals, screen As,Cd,Cr,Fotal Recoverable Arsenic Fotal Recoverable Cadmium Fotal Recoverable Cadmium Fotal Recoverable Chromium Fotal Recoverable Copper Fotal Recoverable Mercury Fotal Recoverable Mercury Fotal Recoverable Mercury Fotal Recoverable Mercury Fotal Recoverable Nickel Fotal Recoverable Zinc	mg/kg dry wt g/100g dry wt u,Ni,Pb,Zn,Hg mg/kg dry wt	15.8 0.031 11.4 11.7 15.9 0.081 4.9	7.3 0.089 14.5 19.6 22 0.117 8.7	18 < 0.10 22 18 29 0.10 7		

Sample Type: Sediment Sample Name: HA211 0 0m HA216 0 0m HA212 0 0m HA214 0								
	Sample Name:	HA211 0.0m 11-Jun-2014 9:55 am	HA206 0.0m 12-Jun-2014 12:15 pm	HA212a 0.0m 13-Jun-2014 11:00 am	HA211 0.0m [63um Fraction]	HA206 0.0m [63um Fraction]		
	Lab Number:	1289075.17	1289075.23	1289075.28	1289075.30	1289075.31		
Organochlorine Pesticides Sc	reening in Soil							
beta-BHC	mg/kg dry wt	-	< 0.010	< 0.010	=	₽.		
delta-BHC	mg/kg dry wt	-	< 0.010	< 0.010	-	8		
gamma-BHC (Lindane)	mg/kg dry wt		< 0.010	< 0.010	8	1.5		
cis-Chlordane	mg/kg dry wt	-	< 0.010	< 0.010		-		
trans-Chlordane	mg/kg dry wt	-	< 0.010	< 0.010		-		
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	-	< 0.04	< 0.04	-	E		
2,4'-DDD	mg/kg dry wt	-	< 0.010	< 0.010				
4,4'-DDD	mg/kg dry wt	-	< 0.010	< 0.010		_		
2,4'-DDE	mg/kg dry wt	-	< 0.010	< 0.010	_	_		
4,4'-DDE	mg/kg dry wt	-	< 0.010	< 0.010	-			
2,4'-DDT	mg/kg dry wt		< 0.010	< 0.010	-	_		
4,4'-DDT	mg/kg dry wt		< 0.010	< 0.010	TE.			
Dieldrin	mg/kg dry wt	-	< 0.010	< 0.010				
Endosulfan I	mg/kg dry wt	-	< 0.010	< 0.010	/			
Endosulfan II	mg/kg dry wt	-	< 0.010	< 0.010				
Endosulfan sulphate	mg/kg dry wt	-	< 0.010	< 0.010	_			
Endrin	mg/kg dry wt		< 0.010	< 0.010		-		
Endrin aldehyde	mg/kg dry wt	_	< 0.010	< 0.010		_		
Endrin ketone	mg/kg dry wt		< 0.010	< 0.010	-	-		
Heptachlor	mg/kg dry wt	3 - 3	< 0.010	< 0.010	-	-		
Heptachlor epoxide	mg/kg dry wt	-	< 0.010		-	-		
Hexachlorobenzene	mg/kg dry wt	-		< 0.010	-	-		
Methoxychlor	mg/kg dry wt	······	< 0.010 < 0.010	< 0.010	-	-		
Polycyclic Aromatic Hydrocarb		oil	V 0.010	< 0.010	(*)	-		
Acenaphthene	mg/kg dry wt	< 0.05	< 0.11	< 0.05		······································		
Acenaphthylene	mg/kg dry wt	< 0.05	< 0.11		-	-		
Anthracene	mg/kg dry wt	< 0.05		< 0.05	-			
Benzo[a]anthracene		< 0.05	< 0.11	< 0.05	•	-		
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.05	< 0.11	< 0.05	50	-		
Benzo[b]fluoranthene + Benzo[mg/kg dry wt] mg/kg dry wt	< 0.05	< 0.11 < 0.11	< 0.05		-		
fluoranthene				< 0.05	-	-		
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	*		
Benzo[k]fluoranthene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	S -		
Chrysene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	-		
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	-		
Fluoranthene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	-		
Fluorene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	A TC A		
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	=			
Naphthalene	mg/kg dry wt	< 0.3	< 0.6	< 0.3		9 = 0		
Phenanthrene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	74	*		
Pyrene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	-		
Tributyl Tin Trace in Soil sampl	es by GCMS							
Dibutyltin (as Sn)	mg/kg dry wt	-	< 0.005	< 0.005	-	-		
Monobutyltin (as Sn)	mg/kg dry wt	-	< 0.007	< 0.007	-			
Tributyltin (as Sn)	mg/kg dry wt	-	< 0.004	< 0.004	-	-		
Triphenyltin (as Sn)	mg/kg dry wt	-	< 0.003	< 0.003		-		
Total Petroleum Hydrocarbons	n Soil							
C7 - C9	mg/kg dry wt	< 13	< 40	< 13	167			
C10 - C14	mg/kg dry wt	< 30	< 70	< 30	-	_		
C15 - C36	mg/kg dry wt	< 50	< 140	< 50	ie)			
Fotal hydrocarbons (C7 - C36)	mg/kg dry wt	< 90	< 300	< 90		-		

Sample Type: Sedir	nent				Time Lie to the	1,00	
	Sample Name:	HA212a 0.0m [63um Fraction]					
	Lab Number:	1289075.32					
Individual Tests							
Extractable Copper*	mg/kg dry wt	19.0	Ē		-		
Extractable Lead*	mg/kg dry wt	28		-	-		_
Extractable Zinc*	mg/kg dry wt	105			2		_

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2, 4-5, 7, 17, 23, 28
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.010 - 60 mg/kg dry wt	1-2, 4-5, 7, 17, 23, 28
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1-2, 4-5, 7, 28
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082) Tested on dried sample	0.010 - 0.04 mg/kg dry wt	1, 4, 7, 23, 28
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1-2, 4-5, 7, 17, 23, 28
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-2, 4-5, 7, 17, 23, 28

Sample Type: Sediment			Sample Type: Sediment								
Test	Method Description	Default Detection Limit	Sample No								
Heavy metals, trace As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, trace level.	0.010 - 0.4 mg/kg dry wt	17, 23								
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	23, 28								
ARC 2M HCI Extraction*	<63µm Sieved Fraction, extracted with 2M HCI. Solid:Liquid 1:50 w/v. ARC Tech Publication No. 47, 1994.	-	30-32								
Sieving through 63 um sieve, no gravimetric result*	<63µm Wet Sieved with no gravimetric determination.	_	17, 23, 28								
Extractable Copper*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	1.0 mg/kg dry wt	30-32								
Extractable Lead*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	0.2 mg/kg dry wt	30-32								
Extractable Zinc*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	2 mg/kg dry wt	30-32								
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	17, 23, 28								

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

ANALYSIS REPORT

Page 1 of 6

SPv1

Client: Contact: **OPUS International Consultants**

ontact: Mr Roger High

C/- OPUS International Consultants

PO Box 5848 AUCKLAND 1141 Lab No: Date Registered:

Date Registered: 01-Jul-2014 Date Reported: 21-Jul-2014

Quote No: 61048

Order No:

Client Reference:

Submitted By:

Mr Roger High

1293375

	Sample Name:	HA 259 0.1m	HA260	HA260 1.0m		
		23-Jun-2014 0.01-0.05m 23 12:50 pm 23-Jun-2014 1:56 pm		23-Jun-2014 1:58 pm		
	Lab Number:	1293375.6	1293375.8	1293375.9		
Individual Tests			-			
Dry Matter	g/100g as rcvd	65	62	72		
Heavy metals, screen As,Cd	,Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	3	4	5		
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	141	_
Total Recoverable Chromium	mg/kg dry wt	8	8	17	-	_
Total Recoverable Copper	mg/kg dry wt	12	12	25	*	
Total Recoverable Lead	mg/kg dry wt	12.7	11.4	14.6	-	
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	##4	_
Total Recoverable Nickel	mg/kg dry wt	3	3	27		
Total Recoverable Zinc	mg/kg dry wt	25	35	32	*	
Organochlorine Pesticides S	creening in Soil					
Aldrin	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
alpha-BHC	mg/kg dry wt	< 0.010	< 0.010	< 0.010	_	
beta-BHC	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
delta-BHC	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	_
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	_
cis-Chlordane	mg/kg dry wt	< 0.010	< 0.010	< 0.010	8	15-7
rans-Chlordane	mg/kg dry wt	< 0.010	< 0.010	< 0.010	m	
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	æ
2,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
4,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	< 0.010	ě	
2,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
1,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	< 0.010		-
2,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
1,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
Dieldrin	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
Endosulfan I	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
Endosulfan II	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
ndosulfan sulphate	mg/kg dry wt	< 0.010	< 0.010	< 0.010	82	
Indrin	mg/kg dry wt	< 0.010	< 0.010	< 0.010	•	*:
Endrin aldehyde	mg/kg dry wt	< 0.010	< 0.010	< 0.010		-
Endrin ketone	mg/kg dry wt	< 0.010	< 0.010	< 0.010	5 = 7	-
Heptachlor	mg/kg dry wt	< 0.010	< 0.010	< 0.010	·	-
Heptachlor epoxide	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
Hexachlorobenzene	mg/kg dry wt	< 0.010	< 0.010	< 0.010		

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sample Type: Soil		 				
\$	Sample Name:	HA 259 0.1m 23-Jun-2014 12:50 pm	HA260 0.01-0.05m 23-Jun-2014 1:56	HA260 1.0m 23-Jun-2014 1:58 pm		
			pm			
0 11 1 5 11 11 0	Lab Number:	1293375.6	1293375.8	1293375.9		
Organochlorine Pesticides Scr				·		
Methoxychlor	mg/kg dry wt		< 0.010	< 0.010	=	-
Polycyclic Aromatic Hydrocarbo	ons Screening in	Soil				
Acenaphthene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	ш	-
Acenaphthylene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	:6	-
Anthracene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	·	
Benzo[a]anthracene	mg/kg dry wt		< 0.04	< 0.04	09#0	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Benzo[b]fluoranthene + Benzo[j fluoranthene	i] mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	
Benzo[k]fluoranthene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	S e .	:•:
Chrysene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	<u>-</u>	-
Fluoranthene	mg/kg dry wt	< 0.04	< 0.04	< 0.04		
Fluorene	mg/kg dry wt	< 0.04	< 0.04	< 0.04		
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	(=:	_
Naphthalene	mg/kg dry wt	< 0.18	< 0.17	< 0.16	120	
Phenanthrene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	
Pyrene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	_	
Total Petroleum Hydrocarbons i	in Soil					
C7 - C9	mg/kg dry wt	< 11	< 11	< 10	20	
C10 - C14	mg/kg dry wt	< 30	< 30	< 20	-1	
C15 - C36	mg/kg dry wt	< 50	< 50	< 40		
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 80	< 80	< 70		
		FOR POST				
Sample Type: Sediment		114/0040.0.0	111017.00			
5	ample Name:	HA/S213 0.0m 13-Jun-2014 2:30 pm	HA217 0.0m 24-Jun-2014 10:10 am	HA210a 0.0m 24-Jun-2014 11:30 am	HA210a 0.5m 24-Jun-2014 11:30 am	HA215 0.0m 25-Jun-2014
	Lab Number:	1293375.5	1293375.11	1293375.13	1293375.14	10:10 am 1293375.16
					1200010.17	
Individual Tests						1200070.10
Dry Matter			43	37	68	
Dry Matter	g/100g as rcvd	50	43 1 41	37	68	52
Dry Matter Total Organic Carbon*	g/100g as rcvd g/100g dry wt		43 1.41	37 2.2	68	
Dry Matter	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg	50 1.26	1.41	2.2	-	52 1.31
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt	50 1.26	1.41	2.2	< 2	52 1.31
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr,	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10	1.41 19 < 0.10	8 < 0.10	- < 2 < 0.10	52 1.31 16 < 0.10
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium	g/100g as rovd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10 16	1.41 19 < 0.10 20	8 < 0.10 18	< 2 < 0.10 8	52 1.31 16 < 0.10 17
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium	g/100g as revd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10 16 17	1.41 19 < 0.10 20 19	8 < 0.10 18 19	< 2 < 0.10 8 7	52 1.31 16 < 0.10 17 17
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10 16 17 27	1.41 19 < 0.10 20 19 30	8 < 0.10 18 19 24	< 2 < 0.10 8 7 4.6	52 1.31 16 < 0.10 17 17 29
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10	1.41 19 < 0.10 20 19 30 0.11	8 < 0.10 18 19 24 0.11	< 2 < 0.10 8 7 4.6 < 0.10	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10	1.41 19 < 0.10 20 19 30 0.11	8 < 0.10 18 19 24 0.11	< 2 < 0.10 8 7 4.6 < 0.10	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	2.2 8 < 0.10 18 19 24 0.11 7 91	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt ening in Soil	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC	g/100g as rovd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt ening in Soil	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC Deta-BHC	g/100g as rovd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt ening in Soil	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin Jalpha-BHC Deta-BHC Deta-BHC	g/100g as revd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt ening in Soil mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 << 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC Deta-BHC delta-BHC delta-BHC Gamma-BHC (Lindane)	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Mickel Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC Deta-BHC Deta-	g/100g as revd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt ening in Soil mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 << 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Mickel Total Recoverable Zinc Organochlorine Pesticides Screen Aldrin alpha-BHC Deta-BHC	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt ening in Soil mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11
Dry Matter Total Organic Carbon* Heavy metals, screen As,Cd,Cr, Total Recoverable Arsenic Total Recoverable Cadmium Total Recoverable Chromium Total Recoverable Copper Total Recoverable Lead Total Recoverable Mercury Total Recoverable Mercury Total Recoverable Nickel Total Recoverable Zinc Organochlorine Pesticides Scree Aldrin alpha-BHC beta-BHC delta-BHC gamma-BHC (Lindane) bis-Chlordane Total Chlordane [(cis+trans)* 100/42]	g/100g as rcvd g/100g dry wt ,Cu,Ni,Pb,Zn,Hg mg/kg dry wt ening in Soil mg/kg dry wt	50 1.26 11 < 0.10 16 17 27 0.10 7	1.41 19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 2 < 0.10 8 7 4.6 < 0.10 2	52 1.31 16 < 0.10 17 17 29 0.11

	Sample Name:	HA/S213 0.0m 13-Jun-2014 2:30 pm	HA217 0.0m 24-Jun-2014 10:10 am	HA210a 0.0m 24-Jun-2014 11:30 am	HA210a 0.5m 24-Jun-2014 11:30 am	HA215 0.0m 25-Jun-2014
	Lab Number:	1293375.5	1293375.11	1293375.13	1293375.14	10:10 am 1293375.16
Organochlorine Pesticides So						1200070:10
4,4'-DDE	mg/kg dry wt	-		< 0.010		
2,4'-DDT	mg/kg dry wt	- ~		< 0.010		
4,4'-DDT	mg/kg dry wt	-		< 0.010		
Dieldrin	mg/kg dry wt	:-	-	< 0.010	-	-
Endosulfan I	mg/kg dry wt	~	-	< 0.010	-	10
Endosulfan II	mg/kg dry wt			< 0.010	(<u>*</u> .	4
Endosulfan sulphate	mg/kg dry wt		-	< 0.010	-	-
Endrin	mg/kg dry wt	;=:	~ 0	< 0.010		_
Endrin aldehyde	mg/kg dry wt	:	27	< 0.010		
Endrin ketone	mg/kg dry wt	-	-	< 0.010	-	≅ 3
Heptachlor	mg/kg dry wt			< 0.010	:=:	20
Heptachlor epoxide	mg/kg dry wt	-	-	< 0.010		_
Hexachlorobenzene	mg/kg dry wt	-	2	< 0.010	-	-
Methoxychlor	mg/kg dry wt	-	*	< 0.010	-	-
Polycyclic Aromatic Hydrocart	ons Screening in S	Soil		· ·		
Acenaphthene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Acenaphthylene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Anthracene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Benzo[a]anthracene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	0.04
Benzo[b]fluoranthene + Benzo fluoranthene	[j] mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	0.05
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	0.05
Benzo[k]fluoranthene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Chrysene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Fluoranthene	mg/kg dry wt	0.05	< 0.06	< 0.06	< 0.04	0.09
Fluorene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Naphthalene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.16	< 0.3
Phenanthrene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	0.06
Pyrene	mg/kg dry wt	0.06	0.07	0.07	< 0.04	0.12
Tributyl Tin Trace in Soil samp	les by GCMS					
Dibutyltin (as Sn)	mg/kg dry wt	-		< 0.005		
Monobutyltin (as Sn)	mg/kg dry wt	-	-	< 0.007	-	_
Tributyltin (as Sn)	mg/kg dry wt	-	-	< 0.004	-	-
Triphenyltin (as Sn)	mg/kg dry wt	-		< 0.003	-	_
Total Petroleum Hydrocarbons	in Soil			·		<u>i_</u>
C7 - C9	mg/kg dry wt	< 14	< 16	< 18	< 10	< 13
C10 - C14	mg/kg dry wt	< 30	< 40	< 40	< 20	< 30
C15 - C36	mg/kg dry wt	< 60	< 70	< 80	< 40	< 50
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 100	< 110	< 130	< 70	< 90
	Pamala Nama	UA244= 0.0=				
	Sample Name:	HA214a 0.0m 25-Jun-2014 12:21 pm	HA/S213 0.0m [63um Fraction]	HA217 0.0m [63um Fraction]	HA210a 0.0m [63um Fraction]	HA215 0.0m [63um Fraction]
	Lab Number:	1293375.20	1293375.22	1293375.23	1293375.24	1293375.25
ndividual Tests						
Ory Matter	g/100g as rcvd	47	-	se.	.=3;	_
Extractable Copper*	mg/kg dry wt	-	16.3	18.2	15.7	19.5
Extractable Lead*	mg/kg dry wt	-	26	27	24	29
Extractable Zinc*	mg/kg dry wt	-	93	101	84	110
Total Organic Carbon*	g/100g dry wt	1.54	·	-	-	_
leavy metals, screen As,Cd,Ci						

	Sample Name:	HA214a 0.0m 25-Jun-2014	HA/S213 0.0m [63um Fraction]	HA217 0.0m [63um Fraction]	HA210a 0.0m [63um Fraction]	HA215 0.0m [63um Fraction
	Lab Number:	12:21 pm 1293375.20	1293375.22	1293375.23	1293375.24	1293375.25
Heavy metals, screen As,Cd,C				·		1200010120
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	<u> </u>	-		
Total Recoverable Chromium	mg/kg dry wt	21	· · · · · · · · · · · · · · · · · · ·		-	
Total Recoverable Copper	mg/kg dry wt	19	-	-		-
Total Recoverable Lead	mg/kg dry wt	32	_	-	40	
Total Recoverable Mercury	mg/kg dry wt	0.13		145	_	_
Total Recoverable Nickel	mg/kg dry wt	8	-			
Total Recoverable Zinc	mg/kg dry wt	119		-	-	_
Organochlorine Pesticides Sci					<u> </u>	
Aldrin	mg/kg dry wt	< 0.010	2			
alpha-BHC	mg/kg dry wt	< 0.010	-	-	-	-
beta-BHC	mg/kg dry wt	< 0.010		•	-	
delta-BHC	mg/kg dry wt				-	3
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	-		-	-
cis-Chlordane		< 0.010		-		-
trans-Chlordane	mg/kg dry wt	< 0.010	-		-	-
	mg/kg dry wt	< 0.010	-	; ₩)	-	-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04		2 0	#	-
2,4'-DDD	mg/kg dry wt	< 0.010	-	**		-
4,4'-DDD	mg/kg dry wt	< 0.010	-		-	-
2,4'-DDE	mg/kg dry wt	< 0.010	-		-	-
4,4'-DDE	mg/kg dry wt	< 0.010	:•	-	-	
2,4'-DDT	mg/kg dry wt	< 0.010	(2)	-	-	10 11 2
4,4'-DDT	mg/kg dry wt	< 0.010	•	-		J=(
Dieldrin	mg/kg dry wt	< 0.010		-		12
Endosulfan I	mg/kg dry wt	< 0.010	-	-	-	<u>(2)</u>
Endosulfan II	mg/kg dry wt	< 0.010	-	-	-	
Endosulfan sulphate	mg/kg dry wt	< 0.010	-	8	-	_
Endrin	mg/kg dry wt	< 0.010	-			-
Endrin aldehyde	mg/kg dry wt	< 0.010	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.010	-	<u></u>		_
Heptachlor	mg/kg dry wt	< 0.010	4 1	-	-	_
Heptachlor epoxide	mg/kg dry wt	< 0.010				_
Hexachlorobenzene	mg/kg dry wt	< 0.010	-	_	_	_
Methoxychlor	mg/kg dry wt	< 0.010	-	-		
Polycyclic Aromatic Hydrocarbo						(70)
Acenaphthene	mg/kg dry wt	< 0.05		:		
Acenaphthylene	mg/kg dry wt	< 0.05			-	
Anthracene	mg/kg dry wt	0.06				-
Benzo[a]anthracene			<u> </u>		~	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.13	<u>-</u>		-	2
Benzo[b]fluoranthene + Benzo[j	mg/kg dry wt] mg/kg dry wt	0.19 0.21			-	
luoranthene						
Benzo[g,h,i]perylene	mg/kg dry wt	0.15	-		-	-
Benzo[k]fluoranthene	mg/kg dry wt	0.10	-		-	-
Chrysene	mg/kg dry wt	0.19	-		-	<u>-</u>
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.05	-	120	-	-
-luoranthene	mg/kg dry wt	0.43	-		-	-
Fluorene	mg/kg dry wt	< 0.05		_	<u>-</u>	(FE)
ndeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.08		-	•	28 C
Naphthalene	mg/kg dry wt	< 0.3	9=		-	
Phenanthrene	mg/kg dry wt	0.33	82	3	-	-
Pyrene	mg/kg dry wt	0.50	3	-	-	-
ributyl Tin Trace in Soil sampl	on by CCMC					

Sample Type: Sedimer	ıt					A
	Sample Name:	HA214a 0.0m 25-Jun-2014 12:21 pm	HA/S213 0.0m [63um Fraction]	HA217 0.0m [63um Fraction]	HA210a 0.0m [63um Fraction]	HA215 0.0m [63um Fraction]
	Lab Number:	1293375.20	1293375.22	1293375.23	1293375.24	1293375.25
Tributyl Tin Trace in Soil sam	ples by GCMS					
Monobutyltin (as Sn)	mg/kg dry wt	< 0.007	į.	_		-
Tributyltin (as Sn)	mg/kg dry wt	< 0.004	#	·)	= ···· · · · · · · · · · · · · · · · ·
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	-	-		
Total Petroleum Hydrocarbon	s in Soil					
C7 - C9	mg/kg dry wt	< 14		(-	_	
C10 - C14	mg/kg dry wt	< 30		-	-	_
C15 - C36	mg/kg dry wt	< 60	<u>a</u>		-	
Total hydrocarbons (C7 - C36) mg/kg dry wt	< 100	Ŧ.	-	* :	= .
	Sample Name:	HA214a 0.0m [63um Fraction]				
	Lab Number:	1293375.26				
Individual Tests						
Extractable Copper*	mg/kg dry wt	18.7		(m)	2	
Extractable Lead*	mg/kg dry wt	28	*	# ::	-	_
Extractable Zinc*	mg/kg dry wt	105	;=:	_		

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix.

Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Sample No
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082) Tested on dried sample	0.010 - 0.04 mg/kg dry wt	6, 8-9, 13, 20
Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	5-6, 8-9, 11 13-14, 16, 20
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.010 - 60 mg/kg dry wt	5-6, 8-9, 11 13-14, 16, 20
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	5-6, 8-9, 11 13-14, 16, 20
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	13, 20
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	5-6, 8-9, 11, 13-14, 16, 20
ARC 2M HCI Extraction*	<63µm Sieved Fraction, extracted with 2M HCI. Solid:Liquid 1:50 w/v. ARC Tech Publication No. 47, 1994.	-	22-26
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	5-6, 8-9, 11, 13-14, 16, 20
Sieving through 63 um sieve, no gravimetric result*	<63μm Wet Sieved with no gravimetric determination.	<u>a</u>	5, 11, 13, 16, 20
Extractable Copper*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	1.0 mg/kg dry wt	22-26
Extractable Lead*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	0.2 mg/kg dry wt	22-26
Extractable Zinc*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	2 mg/kg dry wt	22-26
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	5, 11, 13, 16, 20

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

Lab No: 1293375 v 1 Hill Laboratories Page 6 of 6

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

ANALYSIS REPORT

Page 1 of 4

SPv1

Client:

OPUS International Consultants

Contact: M

Mr Roger High

C/- OPUS International Consultants

PO Box 5848 AUCKLAND 1141 Lab No: Date Registered: 1297663

Date Reported:

11-Jul-2014 04-Aug-2014

Quote No:

61048

Order No:

Client Reference:

Submitted By:

Tom Van Deelen

Sample Type: Soil						
	Sample Name:	02-Jul-2014 11:15 am	BH251 0.1m 03-Jul-2014 11:00 am			
Individual Tests	Lab Number:	1297663.11	1297663.17			
Dry Matter	g/100g as rcvd	56	78	-	5 0	-
Heavy metals, screen As,Cd,	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	11	6	-	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.24	0.37	-	-	-
Total Recoverable Chromium	mg/kg dry wt	18	55	*	_	_
Total Recoverable Copper	mg/kg dry wt	32	67	-	2	_
Total Recoverable Lead	mg/kg dry wt	24	130	127	-	
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	-	:=	_
Total Recoverable Nickel	mg/kg dry wt	26	42	-	-	_
Total Recoverable Zinc	mg/kg dry wt	200	123	-	-	-
Organochlorine Pesticides Sc	reening in Soil					
Aldrin	mg/kg dry wt	< 0.010	< 0.010	-	921	
alpha-BHC	mg/kg dry wt	< 0.010	< 0.010	_	_	
beta-BHC	mg/kg dry wt	< 0.010	< 0.010	_	_	
delta-BHC	mg/kg dry wt	< 0.010	< 0.010	펕		
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	< 0.010	_		-
cis-Chlordane	mg/kg dry wt	< 0.010	< 0.010	-		
trans-Chlordane	mg/kg dry wt	< 0.010	< 0.010			
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	< 0.04		-	-
2,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	_		-
4,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	-		1.77
2,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	-		Berlie American Company of the Compa
4,4'-DDE	mg/kg dry wt	< 0.010	< 0.010		_	
2,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	_		
4,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	-		
Dieldrin	mg/kg dry wt	< 0.010	< 0.010	-	* ****	
Endosulfan I	mg/kg dry wt	< 0.010	< 0.010	-		
Endosulfan II	mg/kg dry wt	< 0.010	< 0.010	_		
Endosulfan sulphate	mg/kg dry wt	< 0.010	< 0.010			-
Endrin	mg/kg dry wt	< 0.010	< 0.010	_		And A control of the state of t
Endrin aldehyde	mg/kg dry wt	< 0.010	< 0.010			
Endrin ketone	mg/kg dry wt	< 0.010	< 0.010	_	-	-
Heptachlor	mg/kg dry wt	< 0.010	< 0.010		=	-
Heptachlor epoxide	mg/kg dry wt	< 0.010	< 0.010			-
Hexachlorobenzene	mg/kg dry wt	< 0.010	< 0.010	_		
Vethoxychlor	mg/kg dry wt	< 0.010	< 0.010	-	•	-
- y	mg/ng dry wt	~ 0.010	~ 0.010	-	940	- 1

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sa	ample Name:	HA266 0.1m 02-Jul-2014 11:15 am	BH251 0.1m 03-Jul-2014 11:00 am			
	Lab Number:	1297663.11	1297663.17			
Polycyclic Aromatic Hydrocarbor	ns Screening in S	Soil	· · · · · · · · · · · · · · · · · · ·			
Acenaphthene	mg/kg dry wt	< 0.04	< 0.03	-		_
Acenaphthylene	mg/kg dry wt	< 0.04	< 0.03		÷	_
Anthracene	mg/kg dry wt	< 0.04	< 0.03	-	ä	
Benzo[a]anthracene	mg/kg dry wt	< 0.04	< 0.03	3.	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.04	< 0.03	H::	-	_
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.04	< 0.03	-	.=	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.04	< 0.03	-	:=	_
Benzo[k]fluoranthene	mg/kg dry wt	< 0.04	< 0.03	-		_
Chrysene	mg/kg dry wt	< 0.04	< 0.03	_		_
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.04	< 0.03	_	-	_
Fluoranthene	mg/kg dry wt	< 0.04	0.03	-	_	_
Fluorene	mg/kg dry wt	< 0.04	< 0.03	_	_	_
ndeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.04	< 0.03	24	_	_
Naphthalene	mg/kg dry wt	< 0.2	< 0.15	_	= =	_
Phenanthrene	mg/kg dry wt	< 0.04	< 0.03		_	_
Pyrene	mg/kg dry wt	< 0.04	0.04	-	■	_
Total Petroleum Hydrocarbons in	Soil					
C7 - C9	mg/kg dry wt	< 12	< 9		<u> </u>	
C10 - C14	mg/kg dry wt	< 30	< 20	-		7
C15 - C36	mg/kg dry wt	< 50	< 40	_	=	_ =
Fotal hydrocarbons (C7 - C36)	mg/kg dry wt	< 90	< 70	-		

	Sample Name:	HA208 0.0m 01-Jul-2014 8:41 am	HA209 0.0m 26-Jun-2014 3:37 pm	HA208 0.0m [63um Fraction]		
	Lab Number:	1297663.1	1297663.5	1297663.25		
Individual Tests		_				
Dry Matter	g/100g as rcvd	28	30		-	¥8
Extractable Copper*	mg/kg dry wt	-	-	18.8	-	_
Extractable Lead*	mg/kg dry wt	-	-	32	_	
Extractable Zinc*	mg/kg dry wt	-		99	·=	_
Total Organic Carbon*	g/100g dry wt	4.2	-	-		_
Heavy metals, screen As,Cd,	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	8	8	-		
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	-	-	
Total Recoverable Chromium	mg/kg dry wt	25	28			
Total Recoverable Copper	mg/kg dry wt	26	27			
Total Recoverable Lead	mg/kg dry wt	31	34		-	
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.20	-		
Total Recoverable Nickel	mg/kg dry wt	10	10		_	
Total Recoverable Zinc	mg/kg dry wt	117	125	-		
Organochlorine Pesticides So	reening in Soil					
Aldrin	mg/kg dry wt	< 0.010	< 0.010			
alpha-BHC	mg/kg dry wt	< 0.010	< 0.010	· · · · · · · · · · · · · · · · · · ·	-	
oeta-BHC	mg/kg dry wt	< 0.010	< 0.010			_
delta-BHC	mg/kg dry wt	< 0.010	< 0.010			
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	< 0.010		-	_
cis-Chlordane	mg/kg dry wt	< 0.010	< 0.010	-		
rans-Chlordane	mg/kg dry wt	< 0.010	< 0.010	en man a man		
otal Chlordane [(cis+trans)* 00/42]	mg/kg dry wt	< 0.04	< 0.04	-	-	-
2,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	-	-	_
,4'-DDD	mg/kg dry wt	< 0.010	< 0.010		-	_
,4'-DDE	mg/kg dry wt	< 0.010	< 0.010			

Lab No: 1297663 v 1

Sample Type: Sediment						
S	Sample Name:	HA208 0.0m 01-Jul-2014 8:41 am	HA209 0.0m 26-Jun-2014 3:37 pm	HA208 0.0m [63um Fraction]		
Organishing Basisias B	Lab Number:	1297663.1	1297663.5	1297663.25		
Organochlorine Pesticides Scre						
4,4'-DDE	mg/kg dry wt		< 0.010	-	-	-
2,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	•	-	12
4,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	-	¥	
Dieldrin	mg/kg dry wt	< 0.010	< 0.010		=	-
Endosulfan I	mg/kg dry wt	< 0.010	< 0.010	H0	=	-
Endosulfan II	mg/kg dry wt	< 0.010	< 0.010	7	15	-
Endosulfan sulphate	mg/kg dry wt	< 0.010	< 0.010	×.	:=	-
Endrin	mg/kg dry wt	< 0.010	< 0.010	-	:	
Endrin aldehyde	mg/kg dry wt	< 0.010	< 0.010	-	-	海 3
Endrin ketone	mg/kg dry wt	< 0.010	< 0.010	-	121	-
Heptachlor	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Methoxychior	mg/kg dry wt	< 0.010	< 0.010	18) = :	-
Polycyclic Aromatic Hydrocarbo	ns Screening in S	Soil				
Acenaphthene	mg/kg dry wt	< 0.08	< 0.08	-	:2:	-
Acenaphthylene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Anthracene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.08	< 0.08		æ)	76 <u></u>
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.08	< 0.08	*	-	ंड
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Chrysene	mg/kg dry wt	< 0.08	< 0.08	-	-) = (
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Fluoranthene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Fluorene	mg/kg dry wt	< 0.08	< 0.08	-	×-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Naphthalene	mg/kg dry wt	< 0.4	< 0.4	ĝ.	3 	16 0
Phenanthrene	mg/kg dry wt	< 0.08	< 0.08	-	-	4
Pyrene	mg/kg dry wt	< 0.08	< 0.08	-	-	-
Tributyl Tin Trace in Soil sample	s by GCMS					
Dibutyltin (as Sn)	mg/kg dry wt	< 0.005	< 0.005			
Monobutyltin (as Sn)	mg/kg dry wt	< 0.007	< 0.007	-	-	
Tributyltin (as Sn)	mg/kg dry wt	< 0.004	< 0.004	· · ·	-	-
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	< 0.003	-		_
Total Petroleum Hydrocarbons in	Soil					
C7 - C9	mg/kg dry wt	< 30	< 30	32	<u> </u>	_
C10 - C14	mg/kg dry wt	< 50	< 50	-		-
C15 - C36	mg/kg dry wt	< 100	< 90	<u>.</u>		<u> </u>
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 170	< 160	-		-
,		1,0	- 100	•	-	-

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment							
Test	Method Description	Default Detection Limit	Sample No				
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1, 5, 11, 17				
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.010 - 60 mg/kg dry wt	1, 5, 11, 17				

Test	Method Description	Default Detection Limit	0
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	Sample No 1, 5, 11, 17
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082) Tested on dried sample	0.010 - 0.04 mg/kg dry wt	1, 5, 11, 17
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	1, 5
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1, 5, 11, 17
ARC 2M HCI Extraction*	<63µm Sieved Fraction, extracted with 2M HCl. Solid:Liquid 1:50 w/v. ARC Tech Publication No. 47, 1994.	-	25
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	s e	1, 5, 11, 17
Sieving through 63 um sieve, no gravimetric result*	<63µm Wet Sieved with no gravimetric determination.	-	1
Extractable Copper*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	1.0 mg/kg dry wt	25
Extractable Lead*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	0.2 mg/kg dry wt	25
Extractable Zinc*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	2 mg/kg dry wt	25
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	1

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

ANALYSIS REPORT

Page 1 of 2

Client: Contact: **OPUS International Consultants**

Josh Burton

C/- OPUS International Consultants

PO Box 5848 AUCKLAND 1141 Lab No: Date Registered:

Date Reported:

Quote No: Order No:

Client Reference: NH2 - 1-C0846.20

1308993

07-Aug-2014

19-Aug-2014

Submitted By: Josh Burton

Sample Type: Aqueous		DUODA			المروب الوالم	A March
	Sample Name:	BH201 06-Aug-2014	BH265 29-Jul-2014			
	Lab Number:	1308993.1	1308993.2			
Individual Tests						
Dissolved Mercury	g/m³	< 0.00008	< 0.00008		:4	
Heavy metals, dissolved, dige	sted, trace As,Cd,C	r,Cu,Ni,Pb,Zn				
Dissolved Arsenic	g/m³	< 0.011	< 0.0011	:(*:		
Dissolved Cadmium	g/m³	< 0.00053	< 0.000053		_	_
Dissolved Chromium	g/m³	< 0.0053	< 0.00053	-		_
Dissolved Copper	g/m³	< 0.0053	< 0.00053		-	_
Dissolved Lead	g/m³	< 0.0011	< 0.00011	-	-	-
Dissolved Nickel	g/m³	< 0.0053	0.00142	-	20	-
Dissolved Zinc	g/m³	< 0.011	0.0011	-		
Polycyclic Aromatic Hydrocart	ons Screening in W	/ater, By Liq/Liq				
Acenaphthene	g/m³	< 0.00010	< 0.00010	<u> </u>	-	
Acenaphthylene	g/m³	< 0.00010	< 0.00010			
Anthracene	g/m³	< 0.00010	< 0.00010	:=:		-
Benzo[a]anthracene	g/m³	< 0.00010	< 0.00010	-	2	
Benzo[a]pyrene (BAP)	g/m³	< 0.00010	< 0.00010	~	-	_
Benzo[b]fluoranthene + Benzo fluoranthene	[j] g/m ³	< 0.00010	< 0.00010	*	-	-
Benzo[g,h,i]perylene	g/m³	< 0.00010	< 0.00010	1 2		
Benzo[k]fluoranthene	g/m³	< 0.00010	< 0.00010	-	-	
Chrysene	g/m³	< 0.00010	< 0.00010	-	-	-
Dibenzo[a,h]anthracene	g/m³	< 0.00010	< 0.00010	-	-	-
Fluoranthene	g/m³	< 0.00010	< 0.00010	-	-	-
Fluorene	g/m³	0.0005	< 0.0002	-	-	(**)
ndeno(1,2,3-c,d)pyrene	g/m³	< 0.00010	< 0.00010	-		
Naphthalene	g/m³	< 0.0005	< 0.0005	-	19	
Phenanthrene	g/m³	0.0005	< 0.0004			-
Pyrene	g/m³	< 0.0002	< 0.0002	-	3€:	-
Total Petroleum Hydrocarbons	in Water					
C7 - C9	g/m³	< 0.10	< 0.10	-	-	
C10 - C14	g/m³	< 0.2	< 0.2	-	-	-
C15 - C36	g/m³	< 0.4	< 0.4	-	-	
Total hydrocarbons (C7 - C36)	g/m³	< 0.7	< 0.7			_

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Aqueous							
Test	Method Description	Default Detection Limit	Sample No				
Heavy metals, dissolved, digested, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm filtration, followed by Nitric acid digestion, ICP-MS, trace level	0.000053 - 0.0011 g/m ³	1-2				
Polycyclic Aromatic Hydrocarbons Screening in Water, By Liq/Liq	Liquid / liquid extraction, SPE (if required), GC-MS SIM analysis [KBIs:4736,2695]	0.00010 - 0.0005 g/m ³	1-2				
Total Petroleum Hydrocarbons in Water	Hexane extraction, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:2803,10734]	0.10 - 0.7 g/m³	1-2				
Total Digestion after Filtration	Sample filtration through 0.45µm membrane filter followed by boiling nitric acid digestion. Required for samples which precipitate after filtration. APHA 3030 E 22nd ed. 2012 (modified).	-	1-2				
Dissolved Mercury	0.45µm filtration, bromine oxidation followed by atomic fluorescence. US EPA Method 245.7, Feb 2005.	0.00008 g/m ³	1-2				

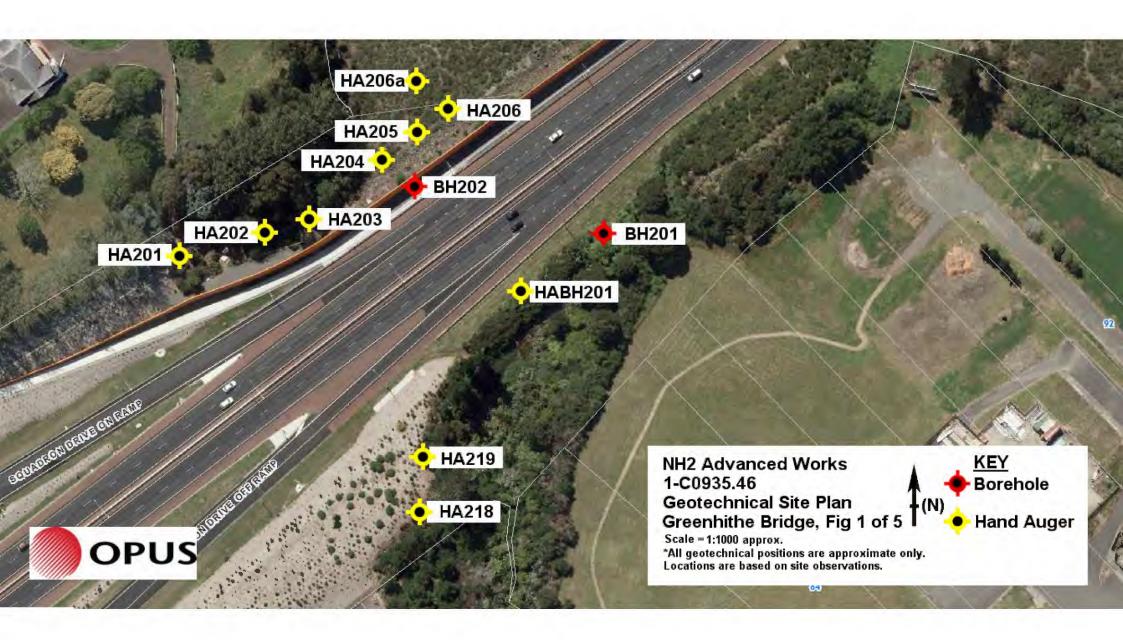
These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division


Lab No: 1308993 v 1 Hill Laboratories Page 2 of 2

Opus International Consultants Ltd The Westhaven, 100 Beaumont St PO Box 5848, Auckland 1141 New Zealand

t: +64 9 355 9500 f: +64 9 355 9585 www.opus.co.nz

APPENDIX F BOREHOLE LOGS: GEOTECHNICAL FACTUAL REPORT (OPUS, 2014B)

Appendix B Borehole Logs & Core Photographs

BOREHOLE LOG				BH	201
PROJECT	CO-ORD.		R.L.	SHEET	
NH2	1747971 E	5927253 N	4.47 m		1 of 2
LOCATION	REF. GRID		DATUM	HOLE LENGTH	40.04

HOLE NO.

					Т	ESTS	Ŧ		_o					CORE	•		DRII	LLING		
GEOLOGY/UNIT	MAIN DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	SPT 'N' VALUE	SPT BLOW COUNTS OR SHEAR VALUE	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	DIP degrees 0 90	DETA	AILED DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL	PIEZOMETER DETAILS
	Clayey SILT; with trace fine sand and traces of fine angular gravel and rootlets, brown, stiff, moist, slightly plastic, trace rootlets.	3	-																	
	Silty CLAY; with trace fine sand and trace	4	_ 											100	НА	¥				
-	fine to 2cmØ gravels, greyish brown mottled orange, stiff, moist, plastic. Fine to 5cmØ GRAVELS; with trace silt, medium dense, moist, brittle. Poor recovery from 0.95m to 1.4m. Inferred 'silty clay'. Material washed away during		1- -											18	HQ		_			
-	drilling due to gravel interference. Silty CLAY; with trace fine to 1cmØ angular gravels, orange mottled brownish orange,		- - - -																	
≣	hard, plastic. Trace organics, trace pockets of brown silty clay.		2- 2-		10	2//2/3/3/2								82	SPT					
	Inclusions of larger 3 to 6cmØ angular gravels at 2.8m.	_2	- - - - - -											52	HQ					¥19247504
	No recovery from 3.0m to 3.45m. Inferred 'clay'. Material not obtained in SPT due to gravel interference.		3- - - - -		1	4//0/0/0/1								0	SPT					
	Push tube attempted at 3.5m. No recovery and material becomes too hard to penetrate at 3.7m.		-	×—× ×××	,															
	Poor recovery from 3.7m to 4.4m. Clayey SILT; with some fine sand, grey, stiff, plastic.		4-7	× × × × × ×	; ; ; ;			CW						17	HQ					
-	Fine sandy SILT; with minor clay, grey, hard, brittle but slightly plastic once reworked.		7	× × × × × × × × × × × × × × × × × × ×	604	3//14/16/22/6 for 25mm	3	CW						100	SPT					
-	Muddy fine grained SANDSTONE; grey, extremely weak, moderately weathered.		5-	××			EW	MW			Fracture.	11° dip; undulatina.								
	Alternating sequence of moderately thick to thick bedded muddy fine grained SANDSTONE (50%); grey, extremely weak, slightly weathered with MUDSTONE (50%); grey, very weak, slightly weathered.		_	× × × × × × × × × × × × × × ×		UCS: 1600 kPa					rough, no Shattered 5.2m to 5 Two fract undulatin 5.5m and Fracture	11° dip; undulating, coating at 5.1m. disegment of core from .25m. general and 48° dips; general at 5.55m. 16° dip; planar, smooth,	63	100	HQ	HQTT				
	Moderately inclined bedding planes, planar to undulating.		+	× × × × × × × × ×	60+	25//29/29/2 for 5mm	EW	sw			trace clay Fracture, smooth, r Shattered 5.85m an	ures, 44° and 48° dips; g, rough, no coating at 5.55m. 16° dip; planar, smooth, coating at 5.6m. 58° dip; undulating, no coating at 5.8m. I segment of core from d 6.0m.		sc	SPT					
Group		2	1	× × × × × ×							Two fract undulatin 6.4m and	ures, 10° and 16° dips; g, smooth, no coating at 6.55m.								
Waitemata	MUDSTONE; grey, very weak, unweathered to slightly weathered. 1cm thick bed of 'soft' MUDSTONE;	ı	_	× × × × × ×							Shattered planar, si cut by a 7 undulatin	d core. 51° dip fracture; mooth, no coating cross '3° dip fracture; g, smooth, no coating n to 7.1m.	78	100	HQ					
>	extremely weak, highly weathered.				60+	60 for 140mm	VW	sw			170m 6.9r	n 10 7.1M.		SC	SPT					
_	Fine grained SANDSTONE; grey, extremely	_	8-								Fracture, trace clay Shattered	38° dip; planar, smooth, coating. I segment of core from 8.15m.								
	weak, moderately weathered.	4	-			UCS: 3200 kPa	EW	MW				8.15m. 70° dip; undulating, no coating at 8.3m.	74	100	HQ					
-	MUDSTONE; grey, very weak, slightly weathered. Muddy fine grained SANDSTONE; grey,		-			3200 kPa	VW	SW												
	extremely weak, slightly weathered.		9-		60+	60 for 100mm								SC	SPT					
			-				VW	sw			95m	68° dip; undulating/ smooth, no coating at 26° dip; undulating, no coating at 9.6m.	71	100	HQ					
NO.	TEO						VW	SW			smooth, r	STARTED				FIN	ISHED			
SWL	9-6-2014 = 1.9m (5pm) 10-6-2014 = 2.2m (8am)											6-06-2 DRILLER Billy				DRI	LLING (-06-20 DF	14
Single Conta	e piezometer installed upon completion. amination samples taken at 0.1m, 1.0m and 2	.0m.										INCLINATION/ AZIMUTH -90°	1				LLING F	RIG	CAT	
												LOGGED T Van D	eelen				ECKED G k B NO.	C nock	er	В

E	BOREHOLE LOG												
PROJECT	С	O-ORD.		R.L.	SHEET	1201							
NH2		1747971 E	5927253 N	4.47 m		2 of 2							
LOCATION See site plan. SH16. Hobs		EF. GRID		DATUM MSL	HOLE LENGTH	10.61 m							

		1		See si		ESTS		DSOII							CORE	<u> </u>		MSL DRII	LLING	 	10	
GEOLOGY/UNIT	MAIN DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	SPT 'N' VALUE		ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	IP		AILED DESC		RQD (%)	TOTAL CORE RECOVERY (%)		DRILLING METHOD	DRILLING FLUID LOSS		BASE OF HOLE & WATER LEVEL	- PIEZOMETER - DETAILS	
	Fine grain sandy MUDSTONE; very weak, slightly weathered.	6						sw		30	Two cros 41° dips; coating a Shattered 9.9m to 1	s-cut fracture undulating, s t 9.95m. d segment of 0.0m.	es, 26° and smooth, no core from	71	100		НОТТ					
	End of Borehole at 10.61m.		11-		60+	60 for 110mm									SC	SPT						
		_	-																			
		-8	12 - - - -																			
			- - - - 13-																			
		_																				
			- 14- - -																			
		10																				
		_	15- - - - -																			
			- 16- -																			
		12	: -																			
			17 <u>-</u> - - - -																			
			18-																			
		14	.																			
			- 19 - - -																			
			_ _ _ _																			
SWL SWL	TES _ 9-6-2014 = 1.9m (5pm) _ 10-6-2014 = 2.2m (8am) le piezometer installed upon completion. tamination samples taken at 0.1m, 1.0m and 2.0	m										STARTED DRILLER INCLINATION	6-06- Bi				DRI	ISHED	Co.	-06-20° DF	14	_
Cont	tamination samples taken at 0.1m, 1.0m and 2.0	m.										AZIMUTH LOGGED	-90°	Doole					Knock	CAT		_
													T Van I	veeien				G P	VI IOCK	디	BH	_

North Harbour No 2 Watermain

1-C0935.46

Watercare Services Limited

Borehole 201

0.00m – 4.90m

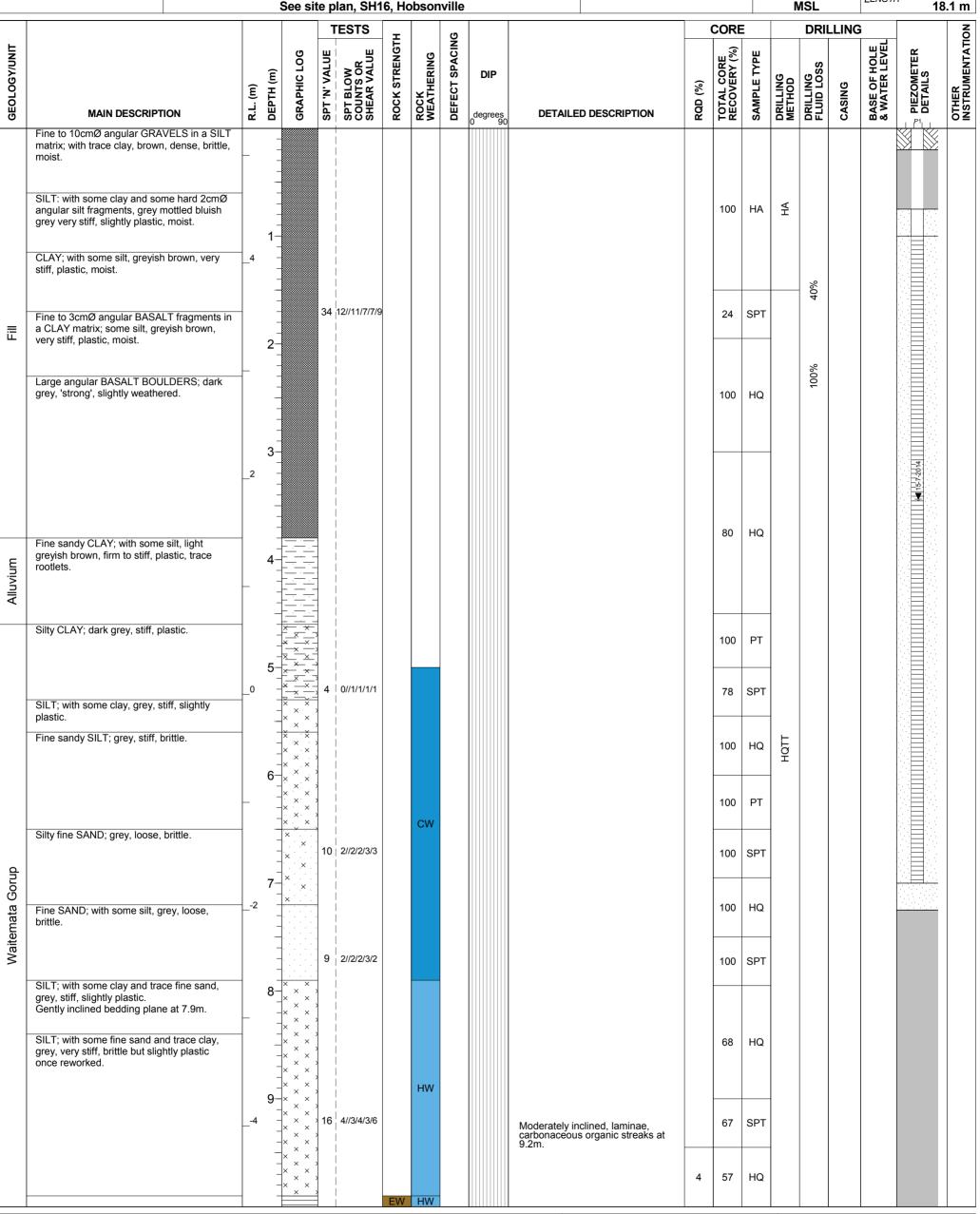
4.9m – 7.70m Box 2 of 3

North Harbour No 2 Watermain

1-C0935.46

Watercare Services Limited

Borehole 201



7.70m – 10.61m EOH Box 3 of 3

HOLE NO. **BOREHOLE LOG BH202 PROJECT** CO-ORD. R.L. SHEET NH2 1747902 E 5927258 N 5.25 m 1 of 2 LOCATION REF. GRID DATUM HOLE **LENGTH** 18.1 m

SEE ATTACHED KEY SHEET FOR EXPLANATION OF SYMBOLS

NOTES

SWL 28-5-2014 = 3.5m (5pm)

SWL 29-5-2014 = 3.5m (8.30am)

Single piezometer installed upon completion.

Contamination samples taken at 0.1m, 1.0m and 2.1m.

STARTED **FINISHED** 29-05-2014 27-05-2014 DRILLER DRILLING CO. Billy DRILLING RIG INCLINATION/ -90° CAT AZIMUTH LOGGED CHECKED T Van Deelen G Knocker **BH202** CLIENT JOB NO.

Watercare Services Limited

1-C0935.46

LOGGED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005) GUIDELINES
Scale 1:33.33

I-C0935.46 NH2.GPJ OPUS CHCH DEC12.GDT 1-8-1

HOLE NO. **BOREHOLE LOG BH202** CO-ORD. PROJECT R.L. SHEET NH2 1747902 E 5927258 N 5.25 m **2** of **2** LOCATION REF. GRID DATUM HOLE LENGTH See site plan, SH16, Hobsonville MSL 18.1 m

				See si	te p	lan, SH1	6, Hc	bson	ville						N	/ISL		LENGTH	18	3.1 m
					Т	ESTS	_		(2)				CORE	:		DRII	LING			Z
GEOLOGY/UNIT	MAIN DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	SPT 'N' VALUE	SPT BLOW COUNTS OR SHEAR VALUE	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	OIP grees	DETAILED DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL	- - Piezometer - Details	OTHER INSTRUMENTATION
	MUDSTONE; grey, extremely weak, highly weathered. \(\text{CLAY}; \text{ with some silt, grey, 'very soft',} \)	_	- - -				EW	HW			Two fractures, 12° and 14° dips; undulating, smooth, trace sand coating at 10.05m and 10.10m.	4	57	HQ						
	plastic. MUDSTONE; grey, extremely weak, highly weathered.		- - -		27	5//6/8/8/5		- CVI					100	SPT						
		6	11- - 3 - - -			UCS: 810 kPa	EW	HW			Two fractures, 57° and 21° dips; planar, smooth, trace clay coating at 11.10m and 11.15m.									
	Alternating sequence of moderately thick bedded MUDSTONE (65%); grey, extreme	y	- - -								Two fractures, 31° and 24° dips; planar, smooth, trace clay coating at 11.50m and 11.55m. Shattered segment of core from 11.8m to 11.9m.	90	100	HQ						
	weak, moderately weathered with fine to medium SAND (35%); with some silt,		12-	× × × × × ×	60+	38//31/29 for 75mm					Moderately inclined, very thin, carbonaceous organic streak at 11.95m.		sc	SPT						
	dense, brittle, weakly cemented. Moderately inclined bedding planes, planar to undulating.		-	× × × × × ×	- 1		EW	HW			11.99m.									
	MUDSTONE; grey, extremely weak to very weak, slightly weathered.	-8	- - 13- -	× × × × × ×							Shattered segment of core from 12.8m to 12.95m.	71	100	HQ						
			-								Shattered segment of core from 13.3m to 13.4m. Fracture, 35° dip; planar, smooth, no coating at 13.4m.									
ıta Gorup			- - - 14-		60+	60 for 120mm UCS: 1500 kPa	VW	sw			Fracture, 35° dip; planar, smooth, no coating at 13.4m.		SC	SPT	НОТТ					
Waitemat	Fine grained SANDSTONE; very weak, moderately weathered. MUDSTONE; grey, extremely weak to very		-				VW	MW			Shattered core from 14.4 to 15.0m.	71	100	HQ						
	weak, highly weathered.		- - - 15-				EW	HW												
		1	-		60+	35//41/19 for 25mm							SC	SPT						
	MUDSTONE; grey, extremely weak, highly weathered. Fine sandy MUDSTONE; grey, weak		- - -								Shattered core from 15.3 to 15.6m.									
	concretion, slightly weathered. Muddy fine grained SANDSTONE; very weak, slightly weathered.		16-				W	SW			Shattered segment of core from 16.05m to 16.15m.	68	100	HQ						
	Becomes very weak from 16.2m.		-								Fracture, 42° dip; planar, smooth, trace clay coating at 16.15m.									
	MUDSTONE; grey, very weak, slightly weathered.		-		60+	60 for 140mm					Shattered core from 16.45m to 17.0m.		SC	SPT						
	Muddy fine grained SANDSTONE; very weak, slightly weathered.		17- 12 - - - - - -				vw	sw			Shattered segment of core from 17.3m to 17.4m.	30	100	HQ						
			18-		60+	60 for 100mm					Shattered segment of core from 17.9m to 17.95m.		SC	SPT						
	End of Borehole at 18.1m.	-	- - - - -			100mm							30	<u>or1</u>						
		1	19- 4 - -	-																
			- - -																	
	I.									шШ	STARTED		1			SHED				

SEE ATTACHED KEY SHEET FOR EXPLANATION OF SYMBOLS

NOTES

A3 (&PHOTO PAGE) 1-C0935.46 NH2.GPJ OPUS CHCH DEC12.GDT 1-8-1

SWL 28-5-2014 = 3.5m (5pm) SWL 29-5-2014 = 3.5m (8.30am)

Single piezometer installed upon completion.
Contamination samples taken at 0.1m, 1.0m and 2.1m.

STARTED FINISHED 27-05-2014 29-05-2014 DRILLER DRILLING CO. DF Billy INCLINATION/ DRILLING RIG -90° CAT AZIMUTH CHECKED G Knocker Logged T Van Deelen **BH202**

JOB NO. 1-C0935.46

CLIENT
Watercare Services Limited

LOGGEL Scale 1:33.33 LOGGED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005) GUIDELINES

North Harbour No 2 Watermain

1-C0935.46

Watercare Services Limited

Borehole 202

0.00m – 3.10m Box 1 of 6

3.10m – 6.00m Box 2 of 6

North Harbour No 2 Watermain

1-C0935.46

Watercare Services Limited

Borehole 202

6.00m – 9.45m Box 3 of 6

9.45m – 13.00m Box 4 of 6

1-C0935.46

Watercare Services Limited

Borehole 202

13.00m – 16.00m Box 5 of 6

16.00m – 18.10m EOH Box 6 of 6

			HOLE NO.
BOREHOLE L	OG		BH203
PROJECT	CO-ORD.	R.L.	SHEET
NH2	1748181 E 5927462 N	4.90 m	1 of 2
LOCATION	REF. GRID	DATUM	HOLE
See site plan, SH16, Hobsonville		MSL	15.12 m

	LOCATION		5	See si	te p	lan, SH1	6, Hc	bsor	ville)			KEF. GRID				I	MSL		LENGT	[⊬] 15.	.12 m
					T	ESTS	Ξ		ā						CORE	:		DRI	LLING			NOI
GEOLOGY/UNIT	MAIN DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	SPT 'N' VALUE	SPT BLOW COUNTS OR SHEAR VALUE	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING		DIP egrees	DETAIL	ED DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL	PIEZOMETER DETAILS	OTHER INSTRUMENTATION
	Fine to 10cmØ angular GRAVELS in a SI matrix; brown, dense, brittle, moist, trace	-T								Ť												
	rootlets. CLAY; with trace silt and trace 1cmØ to 3cmØ angular gravels, orangish brown, singlastic, moist. No more gravel from 0.6m.	iff, 4	 		-										100	НА	HA					
	Becomes brownish grey streaked orange from 1.0m.		1-																			
	CLAY; with some silt and trace fine sand, light grey mottled orangish brown, very sti plastic.	ff,	- - - -		9	2//1/2/3/3									100	<u>SPT</u>						
			2- 												100	HQ						
Ī	Silty fine SAND; dark brownish grey, medium dense, brittle.	2	3- - - - - - -		34 	11//10/6/9/9									60	SPT	-					
	Poor recovery from 3.45m to 4.0m due to gravel interference with the core barrel. Inferred 'large gravels in a sand matrix'.		- - - -												5	HQ						
	No recovery from 4.0m to 4.5m. Inferred 'fine sand', very loose.		4-												5	ĽΩ		100%				
	1cm to 3cmØ angular GRAVELS in a SIL matrix; brown, dense, brittle, moist, trace rootlets.		- - - -		14	9//4/3/3/4									53	SPT						
	Poor recovery from 4.95m to 6.4m due to gravel interference with the core barrel. Large angular gravels in an inferred 'sanc matrix'.		5- - - - - - - - -												22	HQ	НОТТ					
			6- - -												100	Push Tube						
	Silty fine SAND; with trace clay, light grey loose, brittle but slightly plastic once		_ _ _												100	HQ						
	reworked. Silty CLAY; grey mottled orange, very stiff plastic.	2	7-												100	Push Tube	_					
	Silty fine SAND; grey mottled orange, medium dense, brittle. Silty fine SAND; grey, dense, brittle, weak	y		× × × × ×	14 	3//2/3/4/5		RS							100	SPT						
nata Group	Alternating sequence of moderately thin to moderately thick bedded fine to medium grained SANDSTONE (80%); grey, very weak, slightly weathered with MUDSTON (20%); grey, very weak, slightly weathered Gently inclined bedding planes, planar.	≣		× × × × × × × × × × × × × × × × × × ×				CW				Relict fractur	re, 24° dip; planar, aating at 7.8m.	90	100	HQ						
Waitemata		4	- 1	× × × × × ×			VW	SW				Shattered co	ore from 8.7m to 8.8m.									
5			9-	× × × × × ×	60+	60 for 130mm		,				Fracture, 29	° dip; stepped, coating at 9.2m.		100	SPT						
0.51				× × × × × × × × × × × ×								Sillootii, no (соанну ат э.2ПТ.	100	100	HQ						
					<u> </u>								TARTED		1		FIN	ISHED				

SEE ATTACHED KEY SHEET FOR EXPLANATION OF SYMBOLS

NOTES
SWL 30-5-2014 = 6.8m (3.30pm)
SWL 3-6-2014 = 5.3m (8am)
Borehole backfilled.

STARTED FINISHED 29-05-2014 3-06-2014 DRILLER DRILLING CO. DF Billy DRILLING RIG INCLINATION/ -90° CAT AZIMUTH CHECKED G Knocker LOGGED T Van Deelen **BH203**

JOB NO. 1-C0935.46

CLIENT
Watercare Services Limited

A3 (&PHOTO PAGE) 1-C0935.46 NH2.GPJ OPUS CHCH DEC12.GDT 1-8-1.

BOREHOLE LOG BH203 CO-ORD. PROJECT R.L. SHEET NH2 1748181 E 5927462 N 4.90 m **2** of **2** HOLE LENGTH LOCATION REF. GRID DATUM See site plan, SH16, Hobsonville 15.12 m MSL

HOLE NO.

Alternating sequence of moderately thin to moderately think bedded fine to medium grained SANDSTONE (80%); grey, very weak, slightly weathered with MUDSTONE (20%); grey, very weak, slightly weathered. Gently inclined bedding planes, planar. Fine to medium grained SANDSTONE; grey, very weak, unweathered. 11				See	site) pl	an, SH1	6, Ho	bsor	ville)						MSL		LLINGTI	15.	12 m
All properties of moderate year in the moderate of moderate the so reclaims of moderate the so reclaim granted stated in the source of moderate the source of mo						Т	ESTS	_		(D				CORE			DRII	LLING)		N
event, signify weathered and \$40,000 TOLS. Other Part of Ferning and ANASCONE. Service to cooking plants a principle of the	GEOLOGY/UNIT	MAIN DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	SPT 'N' VALUE	SPT BLOW COUNTS OR SHEAR VALUE	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING		0	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL	PIEZOMETER DETAILS	OTHER INSTRUMENTATION
Continued beating parter of parters (parter) Continued beating parter of SANSTONE;		moderately thick bedded fine to medium grained SANDSTONE (80%); grey, very weak, slightly weathered with MUDSTONE		X >	(X (X (X (X (X (X (X (X (X (X		00.6	VW	sw			Gently inclined, very thin, carbonaceous organic streaks at 9.9m.	100								
100 100		Gently inclined bedding planes, planar.		-× >	×							Fracture, 22° dip; stepped,		SN	SPT						
Fine tendung spirate SNAPSTONE (gray very year, useful spirate) and the spirate should be defined by the spirate should be defined b		grey, very weak, unweathered.		11			3000 Ki a	VW	uw			Shooti, no coating at 10.0m.	100	100	HQ						
Semantic presents of this translations of the semantic of the		\weathered.		12-	6	 - +08	60 for 100mm					Two fractures, 55° and 61° dips; undulating, rough, no coating at 11.7m and 11.9m.		SN	SPT						
Shaltened one from 13.25m to 13.5m. Shaltened one from 14.4m to 14.5m. Shaltened one from 14.4m to 15.5m. Shaltened one from 14.4m to 16.5m. Shaltened one from 13.25m to 16.5m. Shaltened one from 14.4m to 16.5m.	Waitemata Group	\langle grey, very weak, unweathered. Alternating sequence of thin to moderately thick bedded fine to medium grained SANDSTONE (75%); grey, very weak,		X > X > X >	< × × × × × × × × × × × × × × × × × × ×							Fracture, 6° dip; planar, smooth, fine sand filling at 12.2m.				QTT					
Shattened over from 13.26m to 13.5m. SN SPT Fracture, 15° dip, undulating, smooth, no coaling at 4.1m. Shattened over from 14.6m to 16.0m. SN SPT Fracture, 15° dip, undulating, smooth, no coaling at 4.1m. Shattened over from 14.6m to 16.0m. SN SPT End of Borehole at 15.12m. SN SPT 18- 19- 19- 19- 19- 19- 19- 19-	Waitem	grey, very weak, slightly weathered.		13	×××	 	29//27/27/6					Fracture, 46° dip; undulating, rough, no coating at 12.7m.	75	100	HQ	_ <u>_</u>					
Fracture, 15' dp; uncidating, smooth, no coading at 14.7 m. 10				× >	X X X X X X X X X X X X X X X X X X X		ioi romm		sw			Shattered core from 13.25m to 13.5m.		CNI	CDT						
Fracture, 15' dip, unique, 15' dip, unique, second, part 41.10, second, part 41.110, second			_	× >				•••						SN	SPI						
15				× >	< × × × × ×							Shattered core from 14.4m to	89	100	HQ						
End of Borehole at 15.12m. 16 17 18 19 19 19												Gently inclined, closely spaced, laminae, carbonaceous organic streaks from 14.65m to 15.0m.		SN	SPT						
-14 -19-		End of Borehole at 15.12m.	_	16-																	
14 				_																	
			_	18-																	
				-																	
				-																	
l ×			<u> </u>	_																	

SEE ATTACHED KEY SHEET FOR EXPLANATION OF SYMBOLS

NOTES SWL 30-5-2014 = 6.8m (3.30pm) SWL 3-6-2014 = 5.3m (8am) Borehole backfilled.

STARTED	FINISHED	
29-05-2014	3-06-2014	
DRILLER	DRILLING CO.	
Billy	DF	
INCLINATION/	DRILLING RIG	
AZIMUTH -90°	CAT	
LOGGED	CHECKED	
T Van Deelen	G Knocker	BH203
CLIENT	JOB NO.	БП203
Watercare Services Limited	1-C0935.46	

A3 (&PHOTO PAGE) 1-C0935.46 NH2.GPJ OPUS CHCH DEC12.GDT 1-8-1

1-C0935.46

Watercare Services Limited

Borehole 203

0.00m – 3.45m

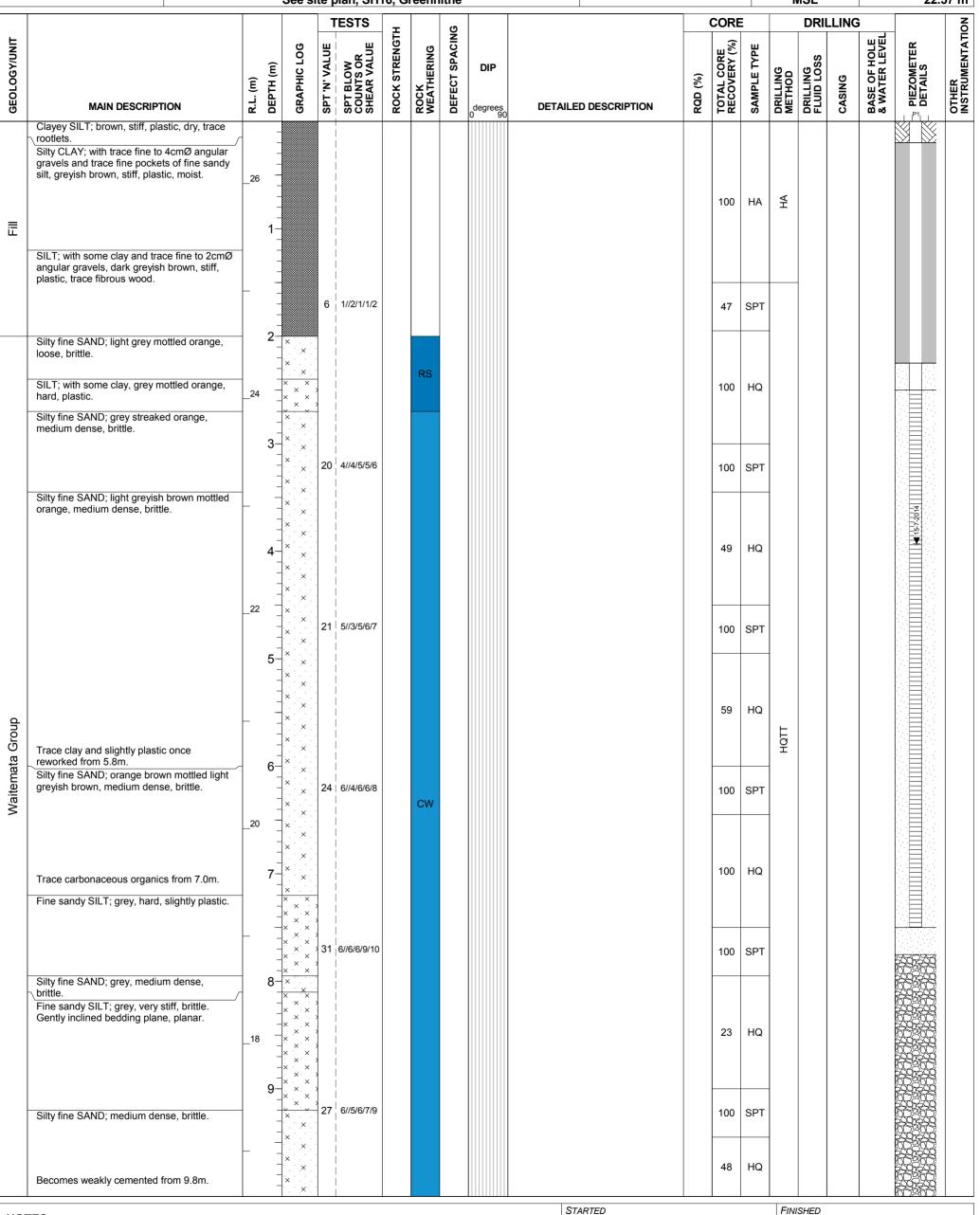
3.45m – 8.30m Box 2 of 4

1-C0935.46

Watercare Services Limited

Borehole 203

8.30m – 12.00m Box 3 of 4



12.00m – 15.12m EOH Box 4 of 4

BOREHOLE LOG BH204 PROJECT CO-ORD. R.L. SHEET NH2 1749087 E 5927788 N 26.58 m 1 of 3 LOCATION REF. GRID DATUM HOLE **LENGTH** 22.57 m See site plan, SH16, Greenhithe MSL

HOLE NO.

NOTES

SWL 4-6-2014 = 3.9m (4.30pm)

SWL 5-6-2014 = 5.75m (7.30am), 3.5m (4.30pm)

SWL 6-6-2014 = 4.9m (8am)

Single piezometer installed upon completion.

Contamination samples taken at 0.1m, 1.0m and 2.0m.

FINISHED 5-06-2014 3-06-2014 DRILLING CO. DRILLER DF Billy INCLINATION/ DRILLING RIG -90° CAT AZIMUTH LOGGED CHECKED T Van Deelen G Knocker

Watercare Services Limited

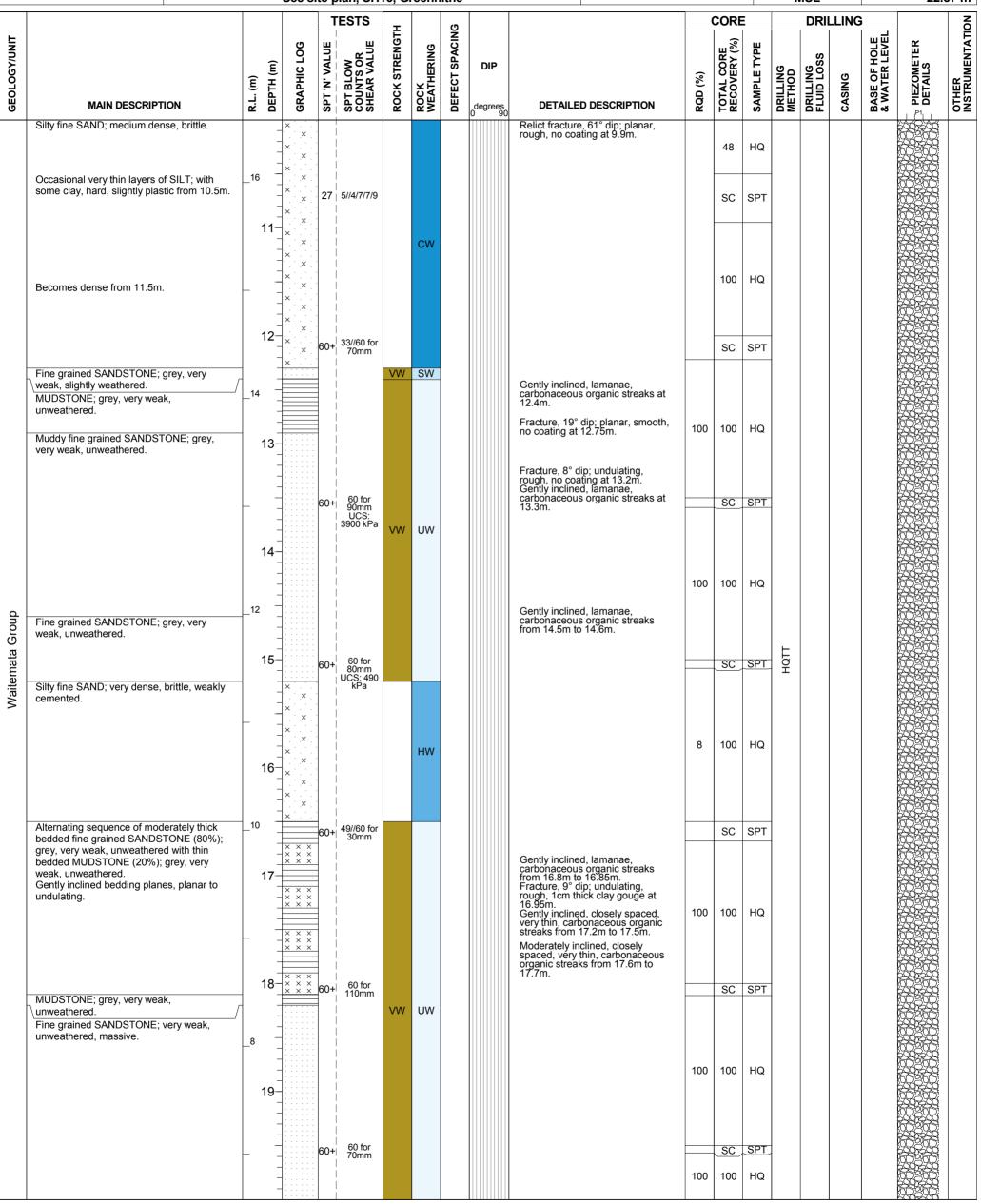
JOB NO.

1-C0935.46

CLIENT

SEE ATTACHED KEY SHEET FOR EXPLANATION OF SYMBOLS

BH204


LOGGED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005) GUIDELINES
Scale 1:33.33

I-C0935.46 NH2.GPJ OPUS CHCH DEC12.GDT 1-8-1

BOREHOLE LOG BH204 PROJECT CO-ORD. R.L. SHEET NH2 1749087 E 5927788 N 26.58 m 2 of 3 LOCATION REF. GRID DATUM HOLE **LENGTH** See site plan, SH16, Greenhithe MSL 22.57 m

HOLE NO.

NOTES

SWL 4-6-2014 = 3.9m (4.30pm)

SWL 5-6-2014 = 5.75m (7.30am), 3.5m (4.30pm)

SWL 6-6-2014 = 4.9m (8am)

Single piezometer installed upon completion.

Contamination samples taken at 0.1m, 1.0m and 2.0m.

STARTED **FINISHED** 3-06-2014 5-06-2014 DRILLING CO. DRILLER DF Billy DRILLING RIG INCLINATION/ -90° CAT AZIMUTH LOGGED CHECKED T Van Deelen G Knocker **BH204**

JOB NO.

1-C0935.46

CLIENT

Watercare Services Limited

SEE ATTACHED KEY SHEET FOR EXPLANATION OF SYMBOLS

LOGGED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005) GUIDELINES

I-C0935.46 NH2.GPJ OPUS CHCH DEC12.GDT 1-8-1

	BOREHOLE LO	OG			HOLE NO.	1204
PROJECT		CO-ORD.		R.L.	SHEET	
NH2		1749087 E	5927788 N	26.58 m		3 of 3
LOCATION		REF. GRID		DATUM	HOLE	
See site plan, SH16, Gr	eenhithe			MSL	LENGTH	22.57 m

			See si	ite p	olan, SH	16, G	reenh	ithe							/ISL		LLINGTI	22.	57 m
				Т	ESTS	т		()				CORE	•		DRIL	LING	ì		N O
GEOLOGY/UNIT	MAIN DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	SPT 'N' VALUE	SPT BLOW COUNTS OR SHEAR VALUE	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	DIP grees	DETAILED DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL	PIEZOMETER DETAILS	OTHER INSTRUMENTATION
dno	Fine grained SANDSTONE; very weak, unweathered, massive.	_6 6 21—			60 for					Gently inclined, moderately thick, carbonaceous organic streaks at 20.7m.	100		HQ						
Waitemata Group	Fine to coarse grained SANDSTONE; very weak, unweathered, massive.	- - - - - - -		60+	60 for 90mm	vw	UW				100		SPT	HQTT					
	End of Borehole at 22.57m.	22-		-60+ 	60 for 70mm							SC	SPT						
		23-																	
		24-																	
		25-																	
		26- 																	
		27-																	
		28-																	
		29-																	
		-								STARTED					SHED				

NOTES SWL 4-6-2014 = 3.9m (4.30pm) SWL 5-6-2014 = 5.75m (7.30am), 3.5m (4.30pm) SWL 6-6-2014 = 4.9m (8am) Single piezometer installed upon completion. Contamination samples taken at 0.1m, 1.0m and 2.0m.

LOGGED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005) GUIDELINES SEE ATTACHED KEY SHEET FOR EXPLANATION OF SYMBOLS

STARTED FINISHED 3-06-2014 5-06-2014 DRILLER DRILLING CO. DF Billy INCLINATION/ DRILLING RIG -90° CAT AZIMUTH CHECKED G Knocker LOGGED T Van Deelen **BH204** JOB NO. 1-C0935.46 CLIENT
Watercare Services Limited

LOGGEL Scale 1:33.33

A3 (&PHOTO PAGE) 1-C0935.46 NH2.GPJ OPUS CHCH DEC12.GDT 1-8-1

1-C0935.46

Watercare Services Limited

Borehole 204

0.00m – 3.45m

3.45m – 7.50m Box 2 of 7

1-C0935.46

Watercare Services Limited

Borehole 204

7.50m – 11.90m Box 3 of 7

11.90m – 14.80m Box 4 of 7

1-C0935.46

Watercare Services Limited

Borehole 204

14.80m – 17.80m Box 5 of 7

17.80m – 20.80m Box 6 of 7

1-C0935.46

Watercare Services Limited

Borehole 204

20.80m – 22.57m EOH Box 7 of 7

Appendix D Hand Auger Logs

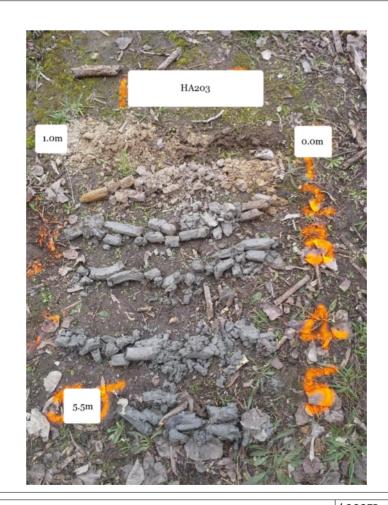
		See site plan, SH16, Hobsonville						MSI	-	<i></i>	5 m
								SOIL TES	TS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	Blows	ENETROMETER per 100 mm 10 12 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Topsoil		f, moderate plasticity, trace rootlets,		- - -	71/ 11/ 11/ 1/ 21// 11/ 21// 11//					Contamination sample at 0.0m	
	(fresh wood).	l light brown with black flecks, very stiff, low plasticity, sensitive, with trace or aked orange (limonite staining), very stiff, moist, moderate plasticity, sensitive		-					186/25		
Ē	trace organics (fresh wood) Becomes very sensitive at		ve, with	1- -					103/8		
	Becomes dry with trace fine Silty CLAY; brownish grey s (rootlets).	e sand at 1.4m. streaked brownish orange, hard, moist, moderate plasticity, traces organics		- ; - -	×				219+		Bulk sample at 1.5m
		vith orange streaks, hard, moist, high plasticity.		2-	× × × × × × × × × × × × × × × × × × ×				219+		
Alluvium			_	- - -	× × × × × × × × × × × × × × × × × × ×				219+		
				3-					219+	Contamination sample at 3.0m	Bulk sample at 3.0m
dn	Clayey SILT with trace fine low plasticity. Becomes greyish blue mott	sand, greyish brown mottled greyish blue with orange limonite streaks, hard, led greyish brown at 3.6m.	, moist, —4	. - - -	× × × ×				219+		Bulk
nate Group	Becomes grey at 4.0m.			4-	× × × × × × × × × × × × × × × × × × ×	$\overline{}$			219+	Contamination sample at 4.0m	sample at 4.0m
Waitemat	Silty fine to medium SAND; Water table at 4.3m	grey, medium dense, saturated, uniformly graded.		- - - -	× × × × ×	_			UTP		
	End of Hand Auger at 5.0m No scala-penetrometer test	. Too hard to auger. undertaken.		- 5 - -	×				<u>UTP</u>		
							<u> 1 i i i i</u>				

NOTES Shear vane 1559 Correction factor = 1.563 Contamination samples taken at 0.1m, 1.0m and 2.0m Bulk samples taken at 1.5m, 3.0m and 4.0m	S Farquhar CHECKED BY:	DATE EXCAVATED 29-05-20 EXCAVATOR	014
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA201

LOG OF AUGER HOLE HA202 PROJECT R.L. SHEET 5927250 N NH2 1747864 E 4.83 m TOTAL DEPTH LOCATION REF. GRID DATUM See site plan, SH16, Hobsonville MSL 1.5 m

HOLE NO.

		See site plan, SH16, Hobsonville								MS	DL		1.5 m
									SC	OIL TE	STS		
GEOLOGY/UNIT		DESCRIPTION	1	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA Blow	ws per 1	100 mm		SHEAR STRENGTH KPa	OTHER TESTS	SAMPLES
Fill	trace rootlets. Silty CLAY; grey, hard, mois	e sand, brown mottled greyish brown and orange brown, hard, dry, low plasticity.	-4	- - - - - 1-							UTP	Contamination sample at 0.1m	Bulk sample at 0.7m
	added. Gravel is fine-mediu			_ _ _									
	End of Hand Auger at 1.5m No scala-penetrometer test	. Too hard to auger. Multiple attempts. undertaken due to underground services uncertainty.	_	_									



NOTES Shear vane 1558 Correction factor = 1.449 Contamination sample taken at 0.1m Bulk sample taken at 0.7m	S Farquhar CHECKED BY:	30-05-201	4	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA202	

HOLE NO. **LOG OF AUGER HOLE HA203** PROJECT R.L. SHEET NH2 1747877 E 5927253 N 3.72 m TOTAL DEPTH LOCATION REF. GRID DATUM See site plan, CH -168:8L (from edge of noise wall) MSL 5.5 m

	See site plan, CH -168:8L (from edge of noise wall)										IVI	SL		5.5 M
										S	OIL TE	STS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	S (0 2	CALA Blow 4 6	vs pe	er 100) mm		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Fill	Silty CLAY; with some coarse sand, fine gravel, boulders, brown, stiff, moist, low plasticity, trace rootlets. Silty CLAY; with some fine sand, brown, stiff, moist, moderate plasticity, trace rootlets. Silty CLAY; with some coarse sand and trace fine sand, light brown mottled orange, moist, moderate plasticity. Becomes stiff, moderately sensitive at 0.5m.		_ <u>Z</u>	11/2 (11/2)								67/20	Contamination sample at 0.0m	
	Fine SAND; with some clay, light brown, loose, moist, brittle. Becomes medium dense at 1.0m. Becomes light grey streaked orange at 1.2m.		1-									203+	Contamination sample at 1.0m	Bulk
	Fine sandy CLAY; light grey, hard, moist, moderate plasticity.	-2										203+		sample at 1.5m
	Orange staining at 1.9m. Becomes dark bluish grey at 2.1m.		2-									UTP	Contamination sample at 2.0m	
dr	CLAY; dark bluish grey, stiff, moist, high plasticity, moderately sensitive.	_	+									87/35		
Waitemata Group	Fine sandy CLAY; dark bluish grey, stiff, moist, high plasticity, moderately sensitive. CLAY; with trace silt, dark bluish grey, very stiff, moist, high plasticity, moderately sensitive.		3									145/55		Bulk sample at 3.0m
Waiter		-0										107/41		Bulk
	Fine sandy CLAY; dark bluish grey, very stiff, moist, low plasticity, moderately sensitive.		4									178/65		sample at 4.0m
		_										UTP		
			5									138/81		
	Becomes hard at 5.5m.					li i	ii	i	İ	i	<u> </u>	203+		
	End of Hand Auger at 5.5m. Gravel blocking hole. No scala-penetrometer test undertaken.	2	-											
						\sqcup								

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.1m, 1.0m, 2.0m Bulk samples taken at 1.5m, 3.0m, 4.0m	J Burton CHECKED BY:	29-05-20 EXCAVATOR	14
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA203

Shear vane 1558
Correction factor = 1.449
Contamination samples taken at 0.0m (x2), 0.8m
Bulk samples taken at 0.5m, 1.5m
M = Marine Sediment

Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)

HOLE NO. **LOG OF AUGER HOLE HA204** PROJECT CO-ORD. SHEET R.L. NH2 Approx. 1.1 m 1 of 1 TOTAL DEPTH LOCATION REF. GRID DATUM See site plan, CH-150:9L (from noise wall) MSL 2 m

	Coo one plan, on record (nomineles mail)	l							
						SOIL TES	STS	1	
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETROMETER Blows per 100 mm 0 2 4 6 8 10 12 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Σ	Clayey SILT; brown, soft, saturated, low plasticity, some rootlets.			××				Contamination	
Alluvium	SILT; with some fine sand and minor clay, light brown, soft, saturated, low plasticity. No rootlets, and a pungent sulphurous odour at 0.2m.			× × × × × × × × × × × × × × × × × × ×			20/12	sample at 0.0m	
Waitemata Group	Silty CLAY; grey, very stiff, wet, moderate plasticity, sensitive.	-0		× × × × × × × × × × × × × × × × × × ×			136/23		
	End of Hand Auger at 2.0m. Too hard to auger. Scala-penetrometer test undertaken from 2.0 m to 2.5 m.		- - - -						

OTES	LC	DGGED	DATE EXCAVATED
TCH OF EXPOSURE			

S Farquhar

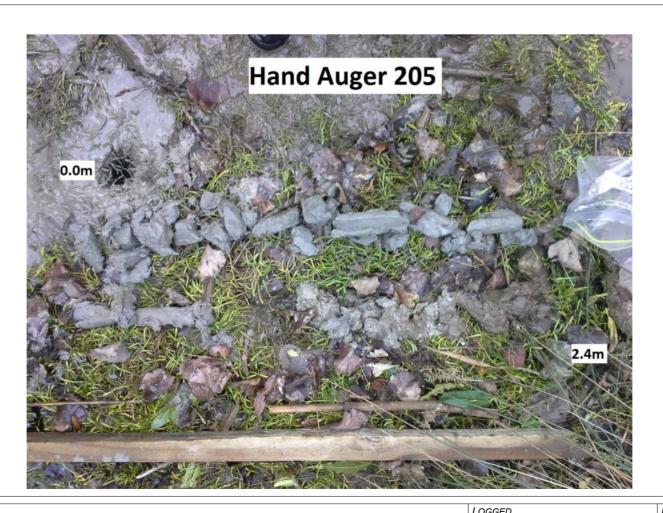
Watercare Services Limited

CHECKED BY:

CLIENT

11-06-2014

HA204


EXCAVATOR

1-C0935.46

JOB NO.

	See site plan, CH -140:10L (from noise wall)						MSL		2.4 m
						SC	DIL TESTS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETROMET Blows per 100 mm 0 2 4 6 8 10 12 14 1	SHEAR STRENGTI (Pa	OTHER TESTS	SAMPLES
Marine Sediment	Fine sandy SILT; light brownish grey, very loose, saturated, brittle, some rootlets and organics. Groundwater level at 0.0m (surface). Clayey SILT; with minor fine sand, light grey, firm, saturated, low plasticity, sensitive, trace rootlets.	-0	- - - -	× × × × × × × × × × × × × × × × × × ×				Contamination sample at 0.0m Contamination sample	Bulk sample at
All.	Silty CLAY; grey, stiff, wet, moderate plasticity, sensitive, trace rootlets. Silty CLAY; grey, stiff, wet, moderate plasticity, sensitive.		- - 1- - -	* * * * * * * * * * * * * * * * * *			89/12	at 0.6m	
Waitemata Group	Becomes moist, very stiff, sensitive at 1.5m. Becomes grey, streaked blackish grey at 1.9m.	_	 2- 	X X X X X X X X X X X X X X X X X X X					Bulk sample at 1.5m
	End of Hand Auger at 2.4m. Too hard to auger. Scala-penetrometer test undertaken from 0.0m to 0.9m and 2.40m to 3.45m.	2	3-						

NOTES Shear vane 1558	LOGGED S Farquhar	DATE EXCAVATED 12-06-2014	
Correction Factor = 1.449 Contamination samples taken at 0.0m (x2), 0.6m Bulk samples taken at 0.3m, 1.5m All. = Alluvium	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA205

HOLE NO. **LOG OF AUGER HOLE HA206** CO-ORD. PROJECT R.L. SHEET Approx. 0.4 m NH2 1 of 1 TOTAL DEPTH LOCATION REF. GRID See site plan, CH -122:13L (from noise wall) MSL 3 m

	See Site plan, CH -122. ISL (Iron Hoise wall)		1		IVIS			3 111
					SOIL TES	STS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETROMETER Blows per 100 mm 0 2 4 6 8 10 12 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sediment	Fine sandy SILT; light brownish grey, very soft, saturated, brittle, some organics. Groundwater level at 0.0m (surface). Trace clay, low plasticity at 0.5m. Moderate plasticity at 0.6m.	-0 -0 -	× × × × × × × × × × × × × × × × × × ×			14/3	Contamination sample at 0.0m Contamination sample	Bulk sample at 0.4m
	Silty CLAY; grey, stiff, wet, low plasticity, sensitive, some rootlets. Trace rootlets at 0.75m. No rootlets at 1.3m.	- 1- - -	X X X X X X X X X X X X X X X X X X X			72/12	at 0.6m	Bulk
Waitemata Group		2- 2	*			148/23 203+		sample at 1.5m
		- - -	X X X X X X X X X X X X X X X X X X X			203+		sample at 2.5m
	End of Hand Auger at 3.0m. Too hard to auger. Scala-penetrometer test undertaken from 0.0m to 0.9m and 3.0m to 3.8m.	- 3 						

SKETCH OF EXPOSURE					

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0. m (x2), 0.6m Bulk samples taken at 0.4m, 1.5m and 2.5m	S Farquhar CHECKED BY:	DATE EXCAVATED 12-06-201 EXCAVATOR	4	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA206	1

LOG OF AUGER HOLE HA206A PROJECT CO-ORD. R.L. Approx. 0.5 m NH2 TOTAL DEPTH LOCATION REF. GRID See site plan CH -122:221 (from noise wall)

HOLE NO.


	See site plan, CH -122:22L (from noise wall)						MSL	<u></u>	3 m
						SC	DIL TESTS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETROME* Blows per 100 mm 0 2 4 6 8 10 12 14	SHEAR STRENGTH	OTHER TESTS	SAMPLES
Marine Sediment	SILT; with some fine sand, greyish brown, soft, saturated, brittle, some rootlets. Groundwater level at 0.0m (surface). Fine to medium SAND; minor silt and trace clay, grey, loose, saturated, brittle but low plasticity on remould, trace rootlets. SILT; with minor fine sand, and minor clay, firm, saturated, low plasticity, sensitive, minor rootlets.	/ -0	X	× × × × × × × × × × × × × × × × × × ×	<u> </u>		1	Contamination sample at 0.0m	Bulk sample at 0.4m
	Clayey SILT; with minor fine sand, grey, stiff, wet, low plasticity, sensitive. Becomes stiff at 1.0m.		1-× -×	× × × × × × × × × × × × × × × × × × ×			58/14	sample at 0.6m Contaminatior sample at 0.9m	7
ata Group	Silty CLAY; with trace fine sand, grey, very stiff, wet, moderate plasticity, moderately sensitive. Silty CLAY; grey, very stiff, moist, moderate plasticity, sensitive.	- - -		× × × × × × × × × × × × × × × × × × ×			100/29		Bulk sample at 1.5m
Waitemata		2	_×	× × × × × × × × × × × × × × × ×			119/29		Bulk sample
	Becomes hard at 3.0m. End of Hand Auger at 3.0m. Too hard to auger.		3 -× -×	× × × × × × × × × × × × × × × × × × ×			203+		at 2.5m
	Scala-penetrometer test undertaken from 0.0m to 0.9m and 3.0m to 3.9m.	_	-						

NOTES Shear vane 1558	LOGGED S Farquhar	DATE EXCAVATED 12-06-20	14
rrection Factor 1.449 ntamination samples at 0. m (x2), 0.6m k samples at 0.4m, 1.5m 2.5m	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	JOB NO. 1-C0935.46	HA206A

	See site plan, CH 590:4L (from bridge rail)						MSL			2.5 m
							SOIL TES	STS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETRO Blows per 100 0 2 4 6 8 10 12		SHEAR STRENGTH KPa	OTHER TESTS	SAMPLES
Marine Sed.	Clayey SILT; with trace fine sand, brownish grey, very soft, saturated, low plasticity, trace shells. Groundwater level at 0.0m (surface).		-×- -×-	× × × × × × × × × × × × × × × × × × ×	-				Contamination sample at 0.0m	
	Silty fine SAND; with some clay, light grey, very stiff, saturated, low plasticity, sensitive.			×				100/00		Bulk sample
	Becomes very stiff, sensitive at 0.5m.		_	×				162/39		at
	Silty CLAY; with trace fine sand, light reddish brown, very stiff, saturated, low plasticity, sensitive, trace organics.		-	× × × × × × × × × × × × × × × × × × ×						0.5m
	Becomes stiff at 1.0m.		f	$\times \times \times$						Bulk sample
Alluvium	Silty fine to coarse SAND; with some clay, reddish brown, stiff, saturated, poorly graded.	2	1 - - - -	×				58/14		at 1.5m
Allu	Becomes firm, moderately sensitive at 1.5m.		-	× · · · · · · · · · · · · · · · · · · ·				43/16		
	Becomes very stiff, sensitive at 2.0m.		2-	×				136/29		
	Silty CLAY; with trace fine sand, dark grey, very stiff, saturated, low plasticity, sensitive.			× × × × ×						
	CLAY; with minor silt and trace fine sand very stiff, saturated, low plasticity, sensitive, and trace fibrous organics. Becomes hard at 2.5m							UTP		Bulk sample
	End of Hand Auger at 2.5m. Too hard to auger. Scala-penetrometer test undertaken from 0.0m to 0.9m and 2.5m to 2.9m.		- - -					UIP		at 2.5m

NOTES	LOGGED	DATE EXCAVATED	_	
Shear vane 1558 Correction factor = 1.449	B Mason	27-06-2015 EXCAVATOR		
Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.5m, 2.5m Sed. = Sediment	CHECKED BY:			
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA207	

HOLE NO.

	See site plan, CH -100:11L (from noise wall)					MS	L		3.1 m
						SOIL TES	STS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETROMETER Blows per 100 mm 0 2 4 6 8 10 12 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sediment	SILT; trace fine sand, greyish brown, very soft, saturated, brittle, some rootlets. Groundwater level at 0.0m (surface). Becomes light grey with trace clay and low plasticity at 0.1m. Some fine sand at 0.3m. Clayey SILT; with some fine sand, light grey, very loose, saturated, low plasticity, moderately sensitive, minor rootlets.	-0		× × × × × × × × × × × × × × × × × × ×			20/12	Contaminatio sample at 0.0m	Bulk sample at 0.5m
	Silty sandy CLAY; light brown, stiff, saturated, moderate plasticity, moderately sensitive, minor rootlets. Silty CLAY; trace fine sand, greyish brown, stiff, saturated, moderately plasticity, moderately sensitive, minor rootlets.		1- -				81/26	sample at 0.7m	Bulk sample at 1.0m
_	With pungent sulphurous smell at 1.3m. Becomes dark brown mottled grey with trace organics at 1.5m. Silty CLAY; with trace fine sand, dark brown, stiff, saturated, high plasticity, sensitive, trace rootlets and trace organics. Sandy CLAY; brown mottled grey, stiff, saturated, high plasticity, sensitive, trace fibrous organics.		-	× × × × × × × × × × × × × × × × × × ×	:		65/17		Bulk sample at 1.5m
Alluvium	Sainty CLAY; with trace fine sand, dark brown, stiff, saturated, high plasticity, sensitive, trace fibrous organics. Sandy CLAY; with trace fine sand, dark brown, stiff, saturated, high plasticity, sensitive, trace fibrous organics, brown mottled grey, stiff, saturated, high plasticity, sensitive. Becomes hard at 2.0m. Large decayed wood fragments at 2.05m	/	2- -	× × ×			203+		Bulk sample at 2.0m
	CLAY; trace fine sand, greyish brown, hard, saturated, high plasticity, some fibrous organics. Becomes light grey and sensitive at 2.5m.	2		× × × × × × × × × × × × × × × × × × ×	3		107/14		Bulk sample at 2.5m
	Silty CLAY; trace fine sand, grey, hard, saturated, brittle but moderate plasticity on remould, some fibrous wood organics.		3-	* -* * * -* * × -* ×			203+		Bulk sample at
	End of Hand Auger at 3.1m. Too hard to auger. Scala-penetrometer test undertaken from 3.15m to 3.65m.		-						3.0m

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2), 0.7m Bulk samples at 0.5m, 1.0m, 1.5m, 2.0m, 2.5m, 3.0m	J Burton CHECKED BY:	1-07-2014 EXCAVATOR	1	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA208	

PROJECT

LOCATION

HOLE NO. **LOG OF AUGER HOLE** HA208A CO-ORD. R.L. Approx. 0.5 m NH2 1 of 1 TOTAL DEPTH REF. GRID

		See site plan, CH-100:16L (from noise wall)						MSI	L	DEPTH 3	3.65 m
								SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETR Blows per 10 0 2 4 6 8 10 1:		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sed.	Groundwater level at 0.0m Clayey SILT; trace fine san	and, greyish brown, very soft, saturated, trace rootlets. (surface). d, greyish brown, saturated, low plasticity, some rootlets. sand, brownish grey, stiff, saturated, high plasticity, sensitive, minor fibrous	-0	- - - -	× × × × × × × × × × × × × × × × × × ×	<u> </u>			87/9	Contamination sample at 0.0m Contamination sample at 0.4m	Bulk sample at 0.5m
	Sandy silty CLAY; greyish I organics.	brown, stiff, saturated, high plasticity, sensitive, trace rootlets and trace fibrous sand, dark brown with black streaks, stiff, saturated, high plasticity, sensitive, minor		1-	× × × × × ×				75/12		sample at 1.0m
	Fine SAND; with some clay	r, light brown mottled white, loose, saturated. e clay, light grey mottled orange, stiff, saturated, moderate plasticity. wn with light grey streaks, stiff, saturated, low plasticity, moderately sensitive, trace		- - -	× ×				67/20		Bulk sample at 1.5m
Alluvium		sand, light grey mottled brown, stiff, saturated, high plasticity, moderately sensitive,		2-	× × × × × × × × × × × × × × × × × × ×				58/20		Bulk sample at 2.0m
A	Some fine sand at 2.5m. Trace fine sand at 2.6m.		2	! — - - -	* * * * * * * * * * * *				81/43		sample at 2.5m
	Becomes very stiff at 3.0m Becomes brittle but plastic	on remould with white specks at 3.1m.		3-	× × × × × ×				142/41		sample at 3.0m
	End of Hand Auger at 3.65	m. Target denth achieved	_	_	× × × × × ×				119/35		Bulk sample at 3.5m
		m. Target depth achieved. idertaken from 3.65m to 4.55m.	4	4- 							

NOTES	LOGGED	DATE EXCAVATED		
Shear vane 1558	J Burton	1-07-201	4	
Correction factor = 1.449 Contamination samples taken at 0.0m (x2), 0.4m Bulk samples taken at 0.5m, 1.0m, 1.5m, 2.0m, 2.5m, 3.0m, 3.5m Push tube sample taken from 1.0m to 1.5m, 2.0m to 2.4m	CHECKED BY:	EXCAVATOR		
Marine Sed. = Marine Sediment. Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA208A	

HOLE NO.

		See site plan, CH -82:12L (trom noise wall)					MSI	_		3.5 m
							SOIL TES	TS	1	
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETI Blows per 1		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sed.	SILT; with minor clay, trace rootlets. Groundwater level at 0.0m Becomes soft at 0.5m.	fine sand, dark grey, very soft, saturated, pungent hydrocarbon odour, some (surface).	-	× × × × × × × × × × × × × × × × × × ×	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			43/17	Contamination sample at 0.0m	Bulk sample at 0.5m
	Silty CLAY; with trace fine s	sand, grey, stiff, moist, high plasticity.	1- -0	× × × × × × × × × × × × × × × × × × ×				58/29		Bulk sample at 1.0m
			-	X X X X X X X X X X X X X X X X X X X	X			84/41		Bulk sample at 1.5m
Alluvium			2-	× × × · × · × · × · × · × · × · × · × ·	× × × ×			72/41		Bulk sample at 2.0m
	Poor recovery from 2.5m to Minor organics (fibrous woo	3.5m. od and plant material) at 2.5m.	-	* * * * * * * * * * * * * * * * * * *	× × × × × × × × × × × × × × × × × × ×			75/43		Bulk sample at 2.5m
	Becomes hard at 3.0m Minor organics (fibrous woo	od and plant material) at 3.1m.	2 2	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×			203+		
	Becomes very stiff at 3.5m. End of Hand Auger at 3.5m.	ı. Target depth achieved. dertaken from 3.65m to 4.05m.		× × ×	×			81/32		
	Scala-penetrometer test un	qertaken irom 3.65m to 4.05m.	4 -							

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0m, 1.5m, 2.0m, 2.5m	J Burton CHECKED BY:	26-06-201 EXCAVATOR	4	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA209	

		See site plan, CH -82:18L (from noise wall)										IVIS	L .		3.6 M
											SC	IL TE	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GKAPHIC LOG	MOISTURE	S	Blo	ws p	NETRO per 100	0 mm		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Σ Ξ	SILT; fine sand, and trace of Groundwater level at 0.0m	clay, greyish brown, very soft, saturated, some rootlets. (surface).			×									Contamination sample at 0.0m	
	Sandy CLAY; greyish brown	n, stiff, saturated, low plasticity, sensitive, minor fibrous organics.		**************************************	<u>*</u>								96/9		
			-0	1-									43/9		
													72/14		
Alluvium	Silty CLAY; with trace fine s	and, grey, stiff, saturated, high plasticity, trace rootlets.		2– ×_	X								58/29		
				- *	× × ×								72/38		
	Dark brown streaks, trace of Becomes reddish brown at	gravel and some organics at 2.8m. 2.9m.	2	_× —	_ ×								130/43		
	Some fine sand at 3.4m.	reddish brown, stiff, low plasticity, moderately sensitive, some fibrous organics		¬×_	$\frac{\times}{\times}$								203+		
	End of Hand Auger at 3.6m Scala-penetrometer test un	. Target depth achieved. dertaken from 3.6m to 4.3m.	_	4-											
			4	-						 					

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2), 0.9m Bulk samples not taken due to low recovery M. = Marine Sediment	J Burton CHECKED BY:	1-07-201 EXCAVATOR	4	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA209A	

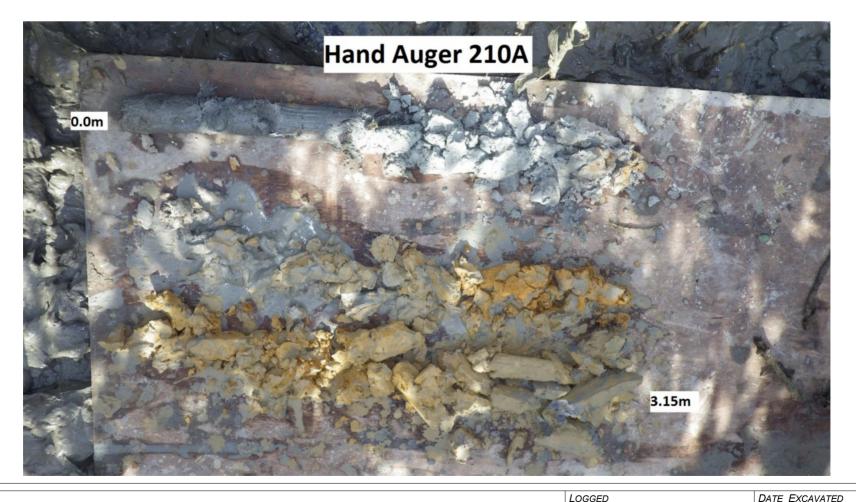
HOLE NO. **LOG OF AUGER HOLE HA210** PROJECT CO-ORD. SHEET R.L. Approx. -1.6 m NH2 1 of 1 TOTAL DEPTH LOCATION REF. GRID See site plan, CH -42:5L (from edge of sea wall) MSL 1.85 m

	See site plan, CH -42.5L (Ironi edge of sea wall)								1.05 111
						SOIL TES	STS	1	_
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETROMETER Blows per 100 mm 0 2 4 6 8 10 12 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sed.	Clayey SILT; grey, very soft, wet, low plasticity, some rootlets. Groundwater level at 0.0m (surface).			× × × × × × × × × × × × × × × × × × ×				Contaminatio sample at 0.0m	n
	Silty fine SAND; with trace clay, brownish orange mottled grey, medium dense, brittle but low plasticity on remould.	2 	! - -	×			203+		Bulk sample at 0.5m
dr	Fine SAND; with some silt, orange, medium dense, saturated, poorly graded. Poor recovery from 0.7m to 1.2m.		-		7				D.H.
Waitemata Group	Fine sandy SILT; with trace clay, grey mottled orange, hard, saturated, low plasticity.		1-	×	\ <u>\</u> .		UTP		Bulk sample at 1.0m
	Fine sandy SILT; orange, medium dense, saturated, brittle.	+	-	×			UTP		
	End of Hand Auger at 1.85m. Too hard to auger.		_	×					
	Scala-penetrometer test undertaken from 0.0m to 0.95m and 1.65 m to 2.05 m.		2-						

NOTES	T Van Deelen	24-06-2014		
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m 1.0m Sed. = Sediment	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA210	

LOG OF AUGER HOLE

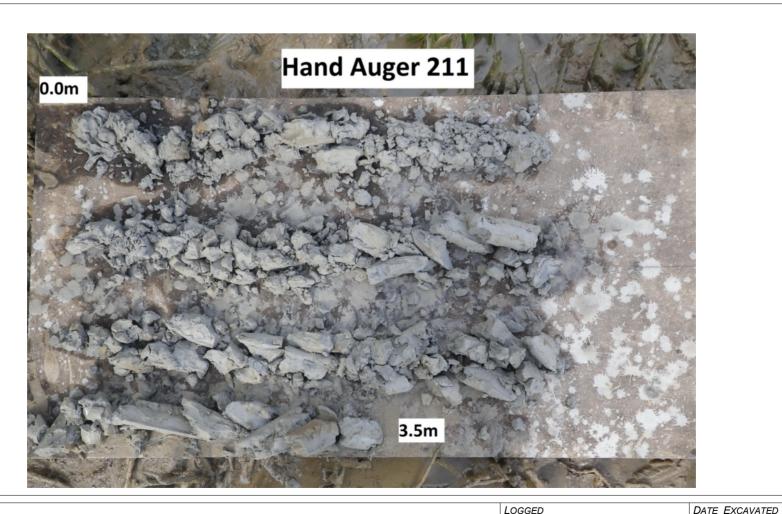
HA210A


 PROJECT
 CO-ORD.
 R.L.
 SHEET

 NH2
 Approx. -1.6 m
 1 of 1

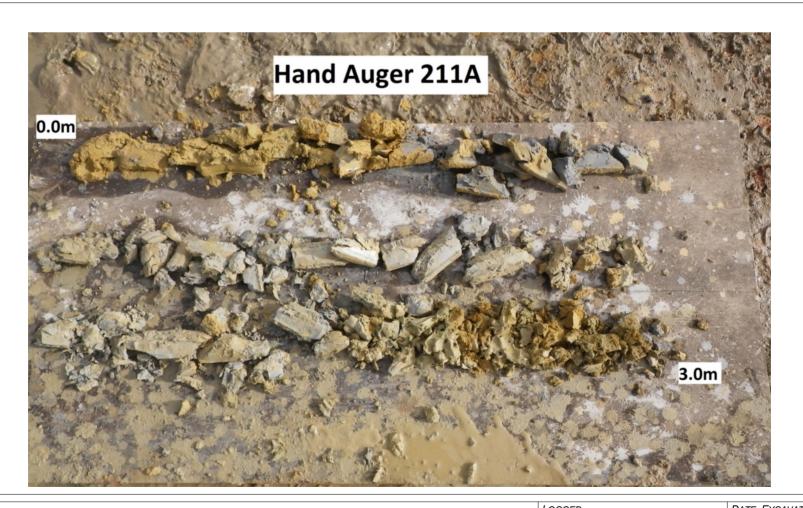
 LOCATION
 REF. GRID
 DATUM
 TOTAL DEPTH

 See site plan, CH -42:10L (from edge of sea wall)
 MSL
 3.15 m


	See site plan, CH -42:10L (from edge of sea wall)						MSL			3.15 m
					SOIL TES	TS				
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETRO Blows per 100 0 2 4 6 8 10 12		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sed.	Silty CLAY; grey, soft, wet, low plasticity, sensitive, some rootlets. Groundwater level at 0.2m.	2	- - - 2 -	× × × × × × × × × × × × × × × × × × ×					Contamination sample at 0.0m	Bulk
	Silty fine SAND; with trace clay, medium dense, wet, brittle but low plasticity on remould, sensitive. Silty fine SAND; grey mottled orange, medium dense, saturated, poorly graded.		-	× · · · × · · · · · · · · · · · · · · ·				119/14	Contamination sample at 0.5m	at 0.5m
	Poor recovery from 1.0m to 1.3m.		1- -	× 1 × 1						
d	Fine SAND; with some silt, orange brown, medium dense, saturated, poorly graded.	_	- - -							Bulk sample at 1.5m
Waitemata Group	Silty fine SAND; medium dense, orange, saturated, poorly graded. Trace fine, weakly cemented, angular gravel at 1.8m.		- - 2-	× × × × × × × × × × × × × × × × × × ×				133/20		1.5111
Wa	Clayey SILT; orange with grey streaks, very stiff, wet, plastic, sensitive.		- - -	× · · · · · · · · · · · · · · · · · · ·				,,,,,		Dolle
	Some fine sand at 2.4m. SILT; with minor clay and trace fine sand, hard, grey, saturated, low plasticity.		+ - - -	× × × × × × × × × × × × × × × × × × ×				203+		Bulk sample at 2.5m
			3- -	× × × × × × × × × × × × × × × ×				203+		
	End of Hand Auger at 3.15m. Target depth achieved. No scala undertaken due to hole collapse.		_							

NOTES	T. V. a.a. D. a. l. a.a.	DATE EXCAVATED		
Shear vane 1558 Correction factor = 1.449	T Van Deelen	24-06-20	14	
Contamination samples taken at 0.0m (x2), 0.5m Bulk samples taken at 0.5m, 1.5m, 2.5m Sed. = Sediment	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005)	CLIENT	JOB NO.		
Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	Watercare Services Limited	1-C0935.46	HA210A	

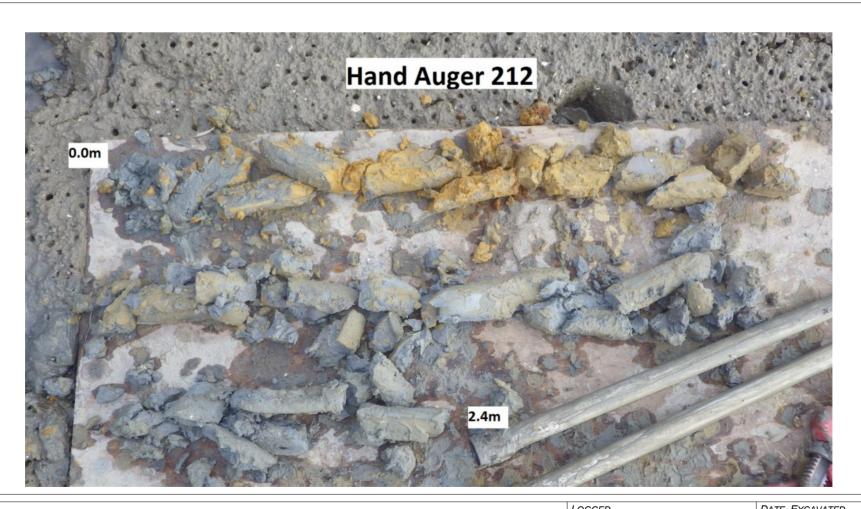
	See site plan, CH 18:16L (from cycle lane left kerb)						MSL	-		3.5 m
							SOIL TES	TS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETF Blows per 10 0 2 4 6 8 10 1		SHEAR STRENGTH KPa	OTHER TESTS	SAMPLES
Sed.	Fine to medium SAND; with minor silt, soft, orange brown, saturated, brittle. Groundwater level at 0.0m (surface).	$\sqrt{}$		×					Contamination sample	n
Marine S	Clayey fine SAND; with minor silt, grey, soft, saturated, brittle but low plasticity on remould. Silty CLAY; with trace fine sand, grey, stiff, wet, moderate plasticity, moderate sensitivity.		->	× × × × × × × × × × × × × × × × × × ×				22/7	at 0.0m	Bulk sample
	Fine sandy CLAY; with minor silt, grey, soft, wet, moderate plasticity.	-0								at 0.5m
	Becomes very stiff, sensitive at 1.0m.		1-					201/13		Bulk
Group	Silty CLAY; with trace fine sand, grey, very stiff, wet, moderate plasticity, moderate sensitivity. Fine sandy CLAY; with minor silt, grey, very stiff, wet, moderate plasticity, sensitive. Silty CLAY; with trace fine sand, grey, very stiff, wet, moderate plasticity, moderate sensitivity.	_	-:	× — ×				172/32		sample at 1.5m
Waitemata (Silty fine SAND; with minor clay, grey streaked black, medium dense, wet, brittle.		2	× × × × × × × × × × × × × × × × × × ×				167/29		
		2		×				203+		Bulk sample at 2.5m
	Silty CLAY; with trace fine sand, grey, hard, wet, moderate plasticity, moderate sensitivity. Becomes hard at 3.0m.		3-	× × × × × × × × × × × × × × × × × × ×				UTP		
	End of Hand Auger at 3.5m. Target depth achieved. Scala-penetrometer test undertaken from 0.0m to 0.9m and 3.5m to 3.6m.		- - - -	× × ×				UTP		Bulk sample at 3.5m



NOTES	LOGGED	DATE EXCAVATED	
Shear vane 1558	S Farquhar	11-06-20	14
Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.5m, 2.5m, 3.5m Sed. = Sediment	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402: 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA211

LOG OF AUGER HOLE PROJECT CO-ORD. R.L. SHEET Approx. .6 m 1 of 1 LOCATION REF. GRID DATUM TOTAL DEPTH DEPTH 3 m

		See site plan, CH 18:24L (from cycle lane left kerb)			7.27. 07			MSI	_	DEPTH	3 m
								SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10	00 mm	SHEAR STRENGTH kPa		SAMPLES
MS	Groundwater level at 0.0m			-						Contamination sample at 0.0m	
	Becomes hard at 0.5m.	or clay, grey with orange streaks, very stiff, wet, brittle but low plasticity on remould. e sand, grey with black streaks, hard, moist, low plasticity.	0	- - -	× × × × × × × × × × × × × × × × × × ×				203+		
				1- -	× × × × × × × × × × × × × × × × × × ×	_			UTP		
Waitemata Group	Silty CLAY; with trace fine	sand, light grey, hard, moist, moderate plasticity.		- - - -	× × × × × × × × × × × × × × × × ×	-			UTP		
Waite	Clayey SILT; with some fin	e sand, grey mottled orange, hard, moist, moderate plasticity.		2- -	× × ×				UTP		
	Clayey fine SAND; orange	mottled grey, hard, moist, brittle but low plasticity on remould.	2	- - 2 - - -					UTP		
	End of Hand Auger at 3.0n Scala-penetrometer test ur	n. Too hard to auger. ndertaken from 0.0m to 0.9m and from 3.0m to 3.6m.		-3					UTP		



NOTES	C Farmula an	DATE EXCAVATED	4.4
Shear vane 1558 Correction factor = 1.449	S Farquhar	11-06-20	14
Contamination samples taken at 0.0m (x2) Bulk samples at 0.5m, 1.5m, 2.5m MS = Marine Sediment	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402: 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA211A

LOG OF AUGER HOLE PROJECT CO-ORD. R.L. SHEET Approx. 1.2 m LOCATION REF. GRID DATUM TOTAL DEPTH 2.4 m

		See site plan, CH 130:13L (from cycle lane left l	kerb)					MS	L '	DEPTH	2.4 m
								SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10	00 mm	SHEAR STRENGTH KPa	OTHER TESTS	SAMPLES
Marine Sed.	Groundwater level at 0.0m	clay, orange brown, loose, saturated, slightly plastic.		-	×					Contamination	
		grey, hard, moist, moderate plasticity.		- - -	× × × × ×				65/14	sample at 0.0m	
	Becomes grey at 0.9m.	e sand, grey, medium dense, wet, low plasticity.	-0	- 1- - -	× × × × × × × × × × × × × × × × × × ×				UTP		Bulk sample at 1.0m
Waitemata Group				- - -	× × × × × × × × × × × × × × × × × × ×				UTP		
				2-	× × × × × × × × × × × × × × × × × × ×				UTP		
	End of Hand Auger at 2.4n Scala-penetrometer test ur	n. Too hard to auger. Idertaken from 0.0m to 0.75m.		-							

NOTES	LOGGED S. Forgubor	DATE EXCAVATED	14
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 1.0m Sed. = Sediment	S Farquhar CHECKED BY:	30-05-201 EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA212

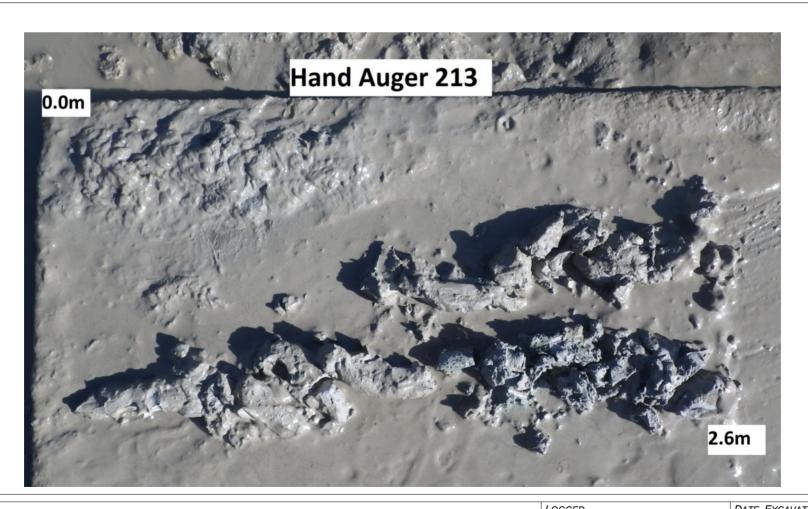
PROJECT

LOCATION

HOLE NO. **LOG OF AUGER HOLE HA212A** CO-ORD. R.L. Approx. 0.1 m NH2 TOTAL DEPTH

REF. GRID

		See site plan, CH 130:21L (from cycle lane left kerb)		T(L) . O			MSI	L	DEPTH	1.8 m
								SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10 0 2 4 6 8 10 1		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Waitemata Group	Fine sandy SILT; with mine Becomes hard at 0.5m. CLAY; with some silt, oran Becomes grey at 1.1m.	d grey, very soft, moist, moderate plasticity. In (surface). Or clay, grey mottled orange, hard, moist, brittle but low plasticity on remould. In ge streaked grey, hard, moist, high plasticity. Or clay, grey, hard, moist, brittle but low plasticity on remould.	-0	- - - - - 1- -	X X X X X X X X X X X X X X X X X X X	. –			UTP	Contamination sample at 0.0m	Bulk sample at 1.0m
	End of Hand Auger at 1.8r Scala-penetrometer test u	m. Too hard to auger. ndertaken from 0.0m to 0.9m.	2	2-	× × × × × × × × × × × × × × × × × × ×				UTP		



NOTES	S Farguhar	30-05-20	14
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 1.0m MS = Marine Sediment	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA212A

LOG OF AUGER HOLE PROJECT CO-ORD. R.L. Approx. -1.7 m 1 of 1 LOCATION See site plan, CH 230:17L (from cycle lane left kerb) PROJECT CO-ORD. R.L. Approx. -1.7 m 1 of 1 TOTAL DEPTH DEPTH 2.6 m

		See site plan, CH 230:17L (from cycle lane left kerb)								MS)L		2.6 m
									S	OIL TE	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SC	CALA PE Blows	per 10	00 mn		SHEAR STRENGTH KPa	OTHER TESTS	SAMPLES
	SILT; with some fine sand, Groundwater level at 0.0m	greyish brown, very soft, saturated, brittle. (surface).		× × ×	, -							Contamination sample	
	SILT; with some fine sand a	and clay, brownish grey, very soft, saturated, low plasticity.		× ×	<u>}</u>							at 0.0m	
Marine Sediment	No recovery from 0.2m to 1	.0m.	2								13/9		
	No recovery from 1.0m to 1	.7m.	1-								SV sinking under own weight		
				 							collapse		
Alluvium	Silty CLAY; grey, stiff, wet,	moderate plasticity.	2-	× × × × × × × × × × × × × × × × × × ×							Hole collapse		Bulk sample at 1.8m
	-	to medium sand, greenish grey, hard, wet, moderate plasticity.	4 ·	× × × × × × × × × × × × × × × × × × ×	<u>:</u>						UTP		sample at 2.3m
	End of Hand Auger at 2.6m Scala-penetrometer test un	i. Too hard to auger. dertaken from 0.0m to 0.9m and 2.6m to 2.9m.											

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 1.8m and 2.3m	S Farquhar CHECKED BY:	13-06-201 EXCAVATOR	4	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA213	

PROJECT

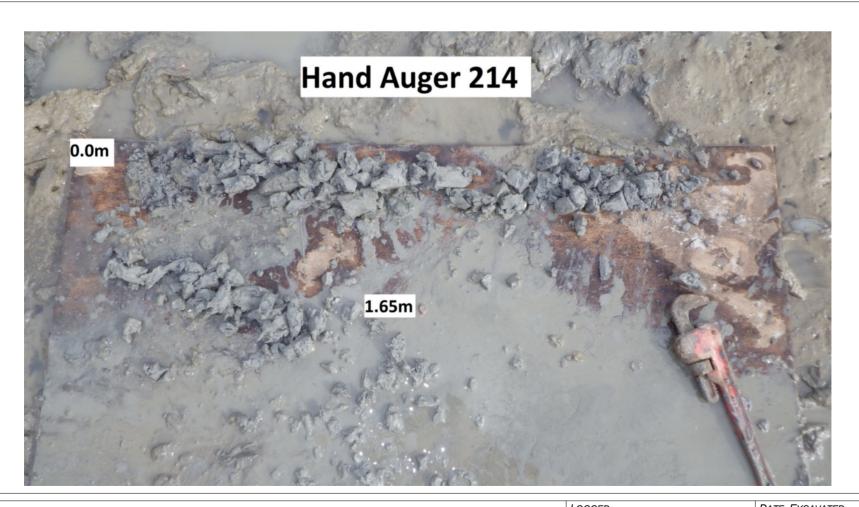
LOCATION

See site plan, CH 230:26L (from cycle lane left kerb)

LOG OF AUGER HOLE CO-ORD. R.L. Approx. -1.9 m 1 of 1 REF. GRID DATUM MSL ACE M

MSL

3.65 m


	Coo one plant, or 2001202 (nom oyore lane for none)					SOIL TESTS				
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETROMETER Blows per 100 mm 0 2 4 6 8 10 12 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES	
Marine Sediment	Clayey SILT; with trace fine sand, dark grey, very soft, saturated, low plasticity trace shells. Groundwater level at 0.0m (surface).	2	-	× × × × × × × × × × × × × × × × × × ×				Contamination sample at 0.0m	Bulk sample at 0.5m	
	Silty sandy CLAY; grey, soft, saturated, low plasticity, trace shells.	_	1-	^ × ^ × × × × × × × × × × × × × × × × ×						
Alluvium	No recovery from 1.5m to 3.0m. Inferred 'silty sandy clay'.	4	2-							
	Silty CLAY; with trace fine sand, grey, hard, saturated, high plasticity.		3-	× × × × × × × × × × × × × × × × × × ×			UTP			
	End of Hand Auger at 3.65m. Target depth achieved. Scala-penetrometer undertaken from 0.0m to 2.0m and 3.65m to 3.95m.									

LOGGED DATE EXCAVATED	SKETCH OF EXPOSURE		
Loggen Date Evaluation			
Linguis - Lawe Excharge			
LAGGED. IDATE SYCHATED			
Loggen Date Symmetry			
Locen Date Evaluates			
LOGGED. DATE EVOLUTED.			
LOCATE SYCHATED			
LOGGED. DATE EVALUATED			
LOCGED DATE EVOLUATED			
DATE EVOLUATED			
LOCGED DATE EXCAVATED			
LOCKED DATE EVOLUATED			
LOGGED DATE EVOLUATED			
LOGGED DATE EVOLUATED			
LOGGED DATE EXCAVATED			
LOCCED DATE EVCAVATED			
LOCGED DATE EVOAVATED			
LOCGED DATE EVOAVATED			
LOGGED DATE EVOLUATED			
LOGGED DATE EVOLUATED			
LOGGED DATE EVCAVATED			
LOCCED DATE EVOLVATED			
		LOCCED	DATE EVOLUNTED

NOTES No shear vane readings due to hole collapse. Scala double bouncing at 3.95m	J Burton	27-06-20	14
Contamination samples taken at 0.0m (x2), 0.8m Bulk sample taken at 0.5m Push tube sample from 1.0m - 1.5m	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA213A

	See site plan, CH 335:16L (from cycle lane leπ kerb)									IVI	SL .			.65 m
									SOIL TESTS					
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	GRAPHIC LOG	MOISTURE	CONDITION		ws pe	IETRO er 100) mm		SHEAR STRENGTH		OTHER TESTS	SAMPLES
MS	Clayey SILT; with some fine sand, greyish brown, very soft, saturated, moderate plasticity, trace shells.		×	× -									Contaminatior sample	
Alluvium	Clayey SILT; grey, very soft, wet, low plasticity, trace shells. Silty CLAY; with trace fine sand, grey, hard, wet, low plasticity, trace shells.	2	× × × × × × × × × × × × × × × × × × ×	× × × × × × ×							203	3	at 0.0m	Bulk sample
	Sity CLAT, with trace line sand, grey, hard, wet, low plasticity, trace shells.		× <u>×</u>			į) i		į					at 0.5m
	Sandy CLAY; with trace silt, grey, hard, moist, moderate plasticity. Silty CLAY; with trace fine sand, grey, hard, moist, high plasticity.		× × × ×											
Waitemata Group	Silty CLAY; with trace fine sand, grey, hard, wet, low plasticity, trace shells.		-××	× × × ×							UTF	o		Bulk sample at 1.0m
S	Silty CLAY; with trace fine sand, grey, hard, moist, high plasticity.			× × ×							UTF	o		
	End of Hand Auger at 1.65m. Too hard to auger. Scala-penetrometer test undertaken from 0.0m to 0.85m and 1.65m to 1.7m.		-											

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0m MS = Marine Sediment	J Burton CHECKED BY:	27-06-201 EXCAVATOR	4	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA214	

PROJECT

LOCATION

	See site plan, CH 335:24L (from cycle lane left kerb)						MSL		2	2.75 m
							SOIL TEST	s		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETRON Blows per 100 r		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Σ	Clayey SILT; with trace fine sand, greyish brown, soft, saturated, moderate plasticity, trace shells. Groundwater level at 0.0m (surface).	\overline{A}		×					Contamination sample	n n
in	Silty sandy CLAY; grey, hard, saturated, moderate plasticity.		_	~	×				at 0.0m	
Alluvium	SAND; with some clay, grey, medium dense, saturated, low plasticity.		-	× ×						Bulk sample
	Silty CLAY; with trace fine sand, grey, hard, wet, high plasticity, trace shells.		_	×				UTP		at 0.5m
	Fine sandy CLAY; grey, hard, moist, moderate plasticity.		-	^ × ^						
			- 1- - -					UTP		Bulk sample at 1.0m
Waitemata Group	Silty CLAY; grey, hard, moist, high plasticity.		- - - -	× × × × × × × × × × × × × × × × × × ×				UTP		Bulk sample at 1.5m
Wait	Becomes very stiff at 2.0m.	— - 4	- 1 2- - -	* * * * * * * * * * * * * * * * * * *	_			145/26		Bulk sample at 2.0m
			- - -	× × × × × × × × × × × × × × × × × × ×						Bulk sample at 2.5m
	End of Hand Auger at 2.75m. Too hard to auger. Scala-penetrometer test undertaken from 0.0m to 0.9m and 2.75m to 2.8m.		-							

NOTES Shear vane 1558	J Burton	27-06-2014		
orrection factor = 1.449 ontamination samples taken at 0.0m (x2) ulk samples taken at 0.5m, 1.0m, 1.5m, 2.0m, 2.5m = Marine Sediment	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA214A	

LOG OF AUGER HOLE PROJECT CO-ORD. R.L. Approx. -1.0 m 1 of 1 LOCATION REF. GRID DATUM TOTAL DEPTH 2 m

	See site plan, CH 490:5L (from edge of seawall)					MS	L		2 m
						SOIL TE	STS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETROMETER Blows per 100 mm 0 2 4 6 8 10 12 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
MS	Clayey SILT; dark grey, soft, saturated, low plasticity, trace shells, trace organics. Groundwater level at 0.0m (surface). Silty CLAY; with some fine sand, grey, hard, saturated, low plasticity, trace shells and trace organics.		_	× × × × × × × × × × × × × × × × × × ×	_			Contamination sample at 0.0m	
Alluvium			_	*			203+		Bulk sample at 0.5m
A	With some medium to coarse sand and organics from 1.1m to 1.3m.	2	- 1- -	× × × × × × × × × × × × × × × × × × ×			203+		Bulk sample at 1.0m
Waitemata Group	Fine sandy SILT; light grey, medium dense, saturated, brittle.			× × × × × × × × × × × × × × × × × × ×			UTP		
	End of Hand Auger at 2.0m. Too hard to auger. Scala-penetrometer test undertaken from 0.0m to 0.65m and from 2.0m to 2.3m.		- 2 - -	× × × × × × × × × × × × × × × × × × ×			UTP		

NOTES		25-06-2014		
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0m MS = Marine Sediment	B Mason CHECKED BY:	EXCAVATOR	14	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA215	

PROJECT

LOCATION

LOG OF AUGER HOLE CO-ORD. R.L. Approx. -1.0 m 1 of 1 REF. GRID DATUM MSI MSI HOLE NO. HA215A SHEET TOTAL DEPTH 2 m

	See site plan, CH 490:10L (from edge of sea wall)			NEF. Gr	ΧID		MS	L	DEPTH	2 m
							SOIL TES	STS		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10 0 2 4 6 8 10 12	OMETER	SHEAR STRENGTH kPa		SAMPLES
Marine Sed.	Clayey SILT; dark grey, very soft, saturated, moderate plasticity, trace shells. Groundwater level at 0.0m (surface).		_	× × × × × × × × × × × × × × × × × × ×	-				Contamination sample at 0.0m	
	Silty fine SAND; with minor clay, light grey, hard, saturated, low plasticity, trace shells.		- - -	× × × × × × × × × × × × × × × × × × ×				UTP		Bulk sample at 0.5m
Alluvium	CLAY; with trace silt, light grey, very stiff, saturated, low plasticity, sensitive. Silty fine SAND; with trace clay, dark grey, medium dense, saturated, poorly graded.	 2	- 2 1- - -	X				136/35		Bulk sample at 1.0m
	Trace organics (fibrous wood) at 1.4m.		- - -	× × × × × × × × × × × × × × × × × × ×				UTP		
M.G	Silty CLAY; with minor fine sand, light grey, hard, saturated, low plasticity.			× × × × × × × × × × × × × × × × × × ×						
	End of Hand Auger at 2.0m. Too hard to auger. Scala-penetrometer test undertaken from 0.0 m to 0.7 m and from 1.9 m to 2.2 m		- 2 - - - -							

NOTES	LOGGED	DATE EXCAVATED	
Shear vane 1558 Correction factor = 1.449	B Mason	25-06-20	14
Contamination = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0 m Sed. = Sediment, WG = Waitemata Group	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA215A

HOLE NO. **LOG OF AUGER HOLE HA216** PROJECT CO-ORD. SHEET R.L. Approx. -0.6 m NH2 1 of 1 TOTAL DEPTH LOCATION REF. GRID See site plan, CH 530:5L (from edge of seawall) MSL 0.6 m

	See site plan, CH 530:5L (from edge of seawall)					MISI			0.6 M	
						SOIL TES	TS			
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETROMETER Blows per 100 mm 0 2 4 6 8 10 12 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES	
Marine Sediment	SILT; with some fine sand, greyish brown, very soft, saturated, brittle. Groundwater level at 0.0m (surface). Becomes blackish grey, very stiff at 0.1m.		_	× × × × × × × × × × × × × × × × × × ×				Contamination sample at 0.1m		
	Clayey SILT; with some fine sand, brownish orange, very stiff, moist, moderate plasticity.			× ×						
Waitemata Group	Silty CLAY; grey, very stiff, moist, moderate plasticity.	_	-	× × × × × × × × × × × × × × × × × × ×			UTP			
	End of Hand Auger at 0.6m. Too hard to auger. Scala-penetrometer test undertaken from 0.6m to 1.0m.		1-							

NOTES Shear vane 1559 Correction factor = 1.563	S Farquhar	29-05-20	14
Contamination sample taken at 0.0m (x2)	GILGRED B1.	LACAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA216

PROJECT

LOCATION

HOLE NO. **LOG OF AUGER HOLE HA216A** R.L. Approx. -0.7 m NH2

REF. GRID

TOTAL DEPTH

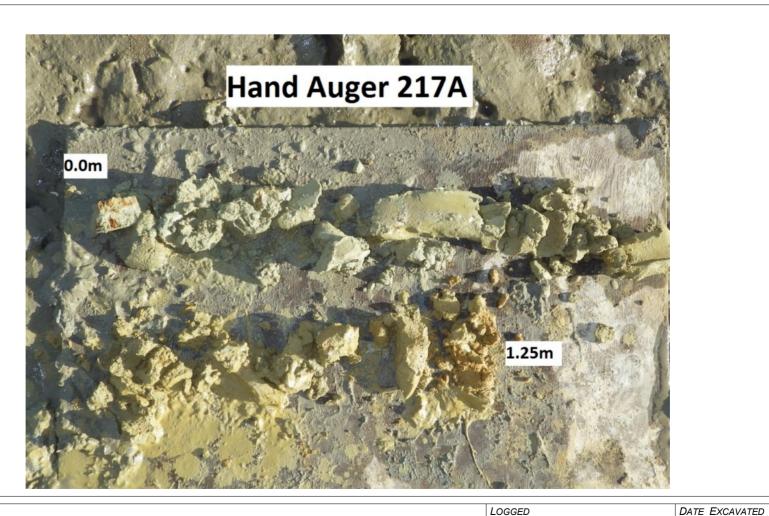
		See site plan, CH 530:10L (from edge of seawall)	1					MSI	L)EPTH	0.6 m
								SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETR Blows per 10 0 2 4 6 8 10 1	0 mm	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sediment	Groundwater level at 0.0m	aturated at 0.25m.				-				Contaminatior sample at 0.1m	
Waitemata Group	Clayey SILT; with some fin Becomes hard at 0.5m.	e sand, grey, stiff, wet, low plasticity.			× × × × × × × × × × × × × × × × × × ×				UTP		
	End of Hand Auger at 0.6n Scala-penetrometer test ur	n. Too hard to auger. Indertaken from 0.0m to 0.5m.		-				i i i i			

rection factor = 1.563 Itamination samples taken at 0.0m (x2) eline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Irmination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2	C Farmula an	DATE EXCAVATED		
Shear vane 1559	S Farquhar	29-05-2014		
Contamination samples taken at 0.0m (x2)	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005)	CLIENT	JOB NO.		
Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	Watercare Services Limited	1-C0935.46	HA216A	

HOLE NO. **LOG OF AUGER HOLE HA217** CO-ORD. PROJECT R.L. SHEET Approx. -1.1 m NH2 1 of 1 TOTAL DEPTH LOCATION REF. GRID See site plan, CH 580:6 (from edge of sea wall) 0.05 m MSL

SOIL T	ESTS	
	1	1
SCALA PENETROMETER SCALA PENETROMETER Blows per 100 mm SUBJECT B	SHEAR STRENGTH kPa	OTHER TESTS
Silty CLAY; very soft, saturated, grey, low plasticity, some shells. Groundwater level at 0.0m (surface).		
No hand auger attempted due to scala refusal. Scala-penetrometer test undertaken from 0.0 m to 0.25 m.		Contamination sample at 0.1m

KETCH OF EXPOSURE		
OTES	LOGGED	DATE EXCAVATED


NOTES	T Van Deelen	24-06-2014		
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) MS = Marine Sediment	CHECKED BY:	EXCAVATOR	,,,	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA217	

HOLE NO.

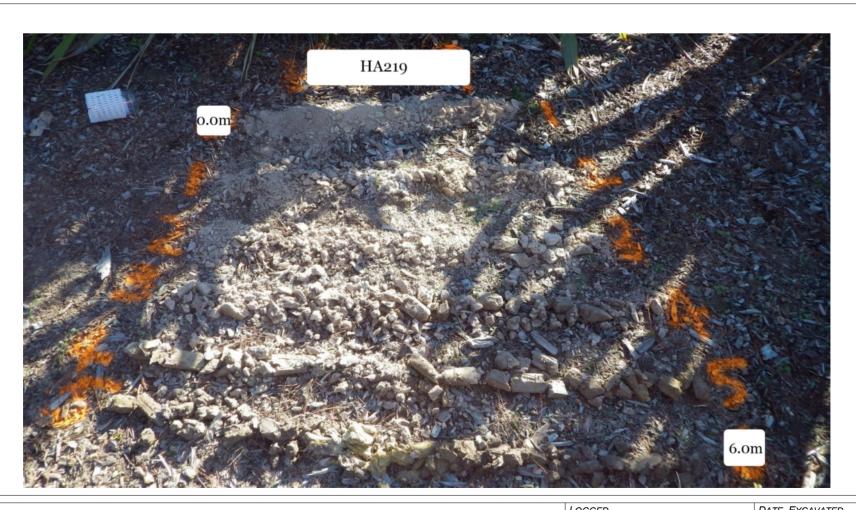
	See site plan, CH 580:11L (from edge of sea wall)					MSL			1.25 m
						SOIL TEST	S		
GEOLOGY/UNIT	DESCRIPTION	R.L. (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10	0 mm	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Σ	Silty CLAY; grey, very soft, saturated, low plasticity, some shells. Groundwater level at 0.0m (surface).		× — :	<					
Waitemata Group	Silty fine SAND; with minor clay, grey mottled orange, loose, saturated, low plasticity.	_					104/17		
	Fine SAND; with some silt, minor clay and trace siltstone fragments, loose, saturated, low plasticity. Fine SAND; with some silt, grey, medium dense, saturated, poorly graded.						10-7/11		
	End of Hand Auger at 1.0m. Too hard to auger. Scala-penetrometer test undertaken from 0.0m to 0.6m and 1.0m to 1.2m.						UTP		
		2	_						

NOTES	LOGGED	DATE EXCAVATED	.
Shear vane 1558	B Mason	24-06-20	14
Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk sample taken at 0.5m M = Marine Sediment	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA217A

HOLE NO. **LOG OF AUGER HOLE HA218** PROJECT R.L. SHEET NH2 1747913 E 5927168 N 12.12 m 1 of 1 TOTAL DEPTH LOCATION REF. GRID DATUM See site plan. SH16. Hobsonville MSL 3.5 m

		90		SOIL TE	STS		
		90			1	1	
DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETROMETER Blows per 100 mm 0 2 4 6 8 10 12 14 16 18 20	SHEAR STRENGTH KPa	OTHER TESTS	SAMPLES
Silty CLAY; with some coarse sand, brown, firm, moist, moderate plasticity, some rootlets. Silty CLAY; with minor fine sand, light brownish grey, stiff, moist, moderate plasticity, and trace pumice. Becomes sensitive at 0.5m. Silty CLAY; with some fine to coarse sub-angular gravel (scoria and basalt), brown, stiff, moist, moderately plastic. Trace fine subangular gravel and minor organics at 1.9m. Becomes dark brown at 2.4m.	-10 ·				70/13 100/25 67/29 120/59 151/59	Contamination sample at 0.1m Contamination sample at 1.0m Contamination sample at 2.0m	n Bulk sample at 1.5m
End of Hand Auger at 3.5m. Too hard to auger. Multiple attempts. No scala-penetrometer test undertaken.							
	Silty CLAY; with some coarse sand, brown, firm, moist, moderate plasticity, some rootlets. Silty CLAY; with minor fine sand, light brownish grey, stiff, moist, moderate plasticity, and trace pumice. Becomes sensitive at 0.5m. Silty CLAY; with some fine to coarse sub-angular gravel (scoria and basalt), brown, stiff, moist, moderately plastic. Trace fine subangular gravel and minor organics at 1.9m. Becomes dark brown at 2.4m.	Silty CLAY; with some coarse sand, brown, firm, moist, moderate plasticity, some rootlets. —12 Silty CLAY; with minor fine sand, light brownish grey, stiff, moist, moderate plasticity, and trace pumice. Becomes sensitive at 0.5m. 1- Silty CLAY; with some fine to coarse sub-angular gravel (scoria and basalt), brown, stiff, moist, moderately plastic. Trace fine subangular gravel and minor organics at 1.9m. 2- 10 Becomes dark brown at 2.4m.	Silty CLAY; with some coarse sand, brown, firm, moist, moderate plasticity, some rootlets. —12 ——12 ——3 ——3 ——5 ——5 ——5 ——5 ——5 ——	Silty CLAY; with some coarse sand, brown, firm, moist, moderate plasticity, some rootlets. -12 Silty CLAY; with minor fine sand, light brownish grey, stiff, moist, moderate plasticity, and trace pumice. Becomes sensitive at 0.5m. Silty CLAY; with some fine to coarse sub-angular gravel (scoria and basalt), brown, stiff, moist, moderately plastic. Trace fine subangular gravel and minor organics at 1.9m. Becomes dark brown at 2.4m. End of Hand Auger at 3.5m. Too hard to auger. Multiple attempts.	Slity CLAY; with some coarse sand, brown, firm, moist, moderate plasticity, some rootlets. -12 Slity CLAY; with minor fine sand, light brownish grey, stiff, moist, moderate plasticity, and trace pumice. Becomes sensitive at 0.5m. Slity CLAY; with some fine to coarse sub-angular gravel (scoria and basait), brown, stiff, moist, moderately plastic. Trace fine subangular gravel and minor organics at 1.9m. 210 Becomes dark brown at 2.4m. End of Hand Auger at 3.5m. Too hard to auger, Multiple attempts.	Sity CLAY; with some coarse sand, brown, firm, moist, moderate plasticity, some rootlets. -12	Sity CLAY; with some coarse sand, brown, firm, moist, moderate plasticity, some rootlets. 12

SKETCH OF EXPOSURE | LOGGED | DATE EXCAVATED |


NOTES	S Farguhar	28-05-201	ı,
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.1m, 1.0m, 2.0m Bulk samples taken at 1.5m, 3.0m	CHECKED BY:	EXCAVATOR	-
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA218

LOG OF AUGER HOLE HA219 PROJECT R.L. SHEET 5927190 N NH2 1747913 E 9.09 m TOTAL DEPTH LOCATION REF. GRID DATUM See site plan, SH16, Hobsonville MSL 6 m

HOLE NO.

		See site plan, SH16, Hobsonville					MS	L		6 m
							SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG MOISTURE	SCALA PENET Blows per 0 2 4 6 8 10		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
	Clayey SILT; with minor fine Silty CLAY; with trace fine s plasticity on remould. Clayey SILT; with trace fine SILT; with some fine sand, r	sand, light brown, hard, dry, low plasticity. sand, light brown mottled orange and dark brown, hard, dry, low plasticity. and, light brown mottled orange and dark brown, hard, dry, brittle but moderate sand, white mottled orange and dark brown, hard, dry, low plasticity. ninor clay, light brown with white flecks, hard, low plasticity, trace rootlets. sand, light greyish brown mottled orange, hard, dry, brittle but moderate plasticity	-8	1				203+ 203+ UTP 203+	Contamination sample at 0.1m Contamination sample at 1.0m Contamination sample	Bulk sample at 1.5m
≣		sand, light grey mottled brownish orange, hard, dry, low plasticity. sand, light greyish brown mottled orange, hard, dry, moderate plasticity. at 3.0m.	-6	3-				203+	at 2.0m	Bulk sample at 3.0m
	High plasticity from 3.7m.	nard, moist, moderate plasticity. ttled brownish orange and dark brown, and very stiff from 4.0m.		4-				203+ 122/59		Bulk sample at 4.0m
	Trace fine sand and modera Becomes hard from 4.5m. CLAY; with some silt, grey s	treaked brownish orange, hard, moist, high plasticity.		-				203+		7.011
	Silty CLAY; greyish brown, h Becomes very stiff, moderate	nard, moist, moderate plasticity. ely sensitive from 5.0m.	-4	5-				119/36		
	Becomes yellowish brown n Becomes brownish grey, mo			=				158/58		
	End of Hand Auger at 6.0m No scala-penetrometer test		_	6 -				116/72		

NOTES	S Farguhar	28-05-201	14
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m, 1.0m, 2.0m Bulk samples at 1.5m, 3.0m, 4.0m	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA219

LOG OF AUGER HOLE

HABH201

		See site plan, SH16, Hobsonville					IVISI	-	2.5 m	•••
							SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10 0 2 4 6 8 10 12		SHEAR STRENGTH KPa	OTHER TESTS	
	Silty CLAY; with some fine	ne sand, dark brown, firm, moist, some organics (fresh wood and rootlets). sand, grey, moist, firm, high plasticity, trace rootlets and organics. I and trace fine gravel, grey mottled light brown, firm, moist, moderate plasticity, 0.5m.	-4					84/23		
Fill	Becomes very stiff at 1.0m.			- 1- -				128/53		
ш	Silty CLAY; with trace fine to Medium angular basalt GRA	sand and pumice fragments, brownish orange, very stiff, moist, moderate plasticity or medium angular gravel, brownish orange, very stiff, moist, moderate plasticity. AVEL; loose, poorly graded. Pl, brownish orange mottled white, hard, moist, moderate plasticity.	<u>y.</u>					UTP		
	Becomes very stiff at 2.0m.		:	2-				175/88		
	End of Hand Auger at 2.5 n No scala-penetrometer test	n. Too hard to auger. Multiple attempts. undertaken due to underground services uncertainty.	-2	- - - -				166/100/		

NOTES Shear vane 1559 Correction factor = 1.563	J Burton CHECKED BY:	28-05-20 EXCAVATOR	14
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HABH201

APPENDIX G SOIL CONTAMINATION ASSESSMENT

Project: North Harbour No. 2 Watermain - GREENHITHE SECTION ONLY

Soil Test Results (i.e. sediment test results reported seperately)

Indeno(1,2,3-c,d)pyrene Naphthalene Phenanthrene Pyrene Note: other para	< 0.03 < 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03 0.04	< 0.03 < 0.03 < 0.03 < 0.03 < 0.15 < 0.03 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03 0.04	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03 < 0.03	< 0.04 < 0.04 < 0.04 < 0.04 < 0.16 < 0.04 < 0.04	< 0.03 0.03 < 0.03 < 0.03 < 0.14 < 0.03 0.04	< 0.03 < 0.03 < 0.03 < 0.14 < 0.03 < 0.03 ne next pa	- - - - - -	- - - - 69(12) - 1.3-1600(12)	- - - - - -	- - - - -
c,d)pyrene Naphthalene Phenanthrene Pyrene	< 0.03 0.03 < 0.03 < 0.03 < 0.14 < 0.03 0.04	< 0.03 < 0.03 < 0.03 < 0.03 < 0.15 < 0.03 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03 0.04	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03 < 0.03	< 0.04 < 0.04 < 0.04 < 0.04 < 0.16 < 0.04 < 0.04	< 0.03 0.03 < 0.03 < 0.03 < 0.14 < 0.03 0.04	< 0.03 < 0.03 < 0.03 < 0.14 < 0.03 < 0.03	- - - -	- - - 69(12)		- - -
c,d)pyrene Naphthalene Phenanthrene	< 0.03 0.03 < 0.03 < 0.03 < 0.14 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03 < 0.15 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03	< 0.04 < 0.04 < 0.04 < 0.04 < 0.16 < 0.04	< 0.03 0.03 < 0.03 < 0.03 < 0.14 < 0.03	< 0.03 < 0.03 < 0.03 < 0.14 < 0.03	- - -	- - - 69(12)		- - -
c,d)pyrene Naphthalene Phenanthrene	< 0.03 0.03 < 0.03 < 0.03 < 0.14 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03 < 0.15 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14 < 0.03	< 0.04 < 0.04 < 0.04 < 0.04 < 0.16 < 0.04	< 0.03 0.03 < 0.03 < 0.03 < 0.14 < 0.03	< 0.03 < 0.03 < 0.03 < 0.14 < 0.03	- - -	- - - 69(12)		- - -
c,d)pyrene Naphthalene	< 0.03 0.03 < 0.03 < 0.03 < 0.14	< 0.03 < 0.03 < 0.03 < 0.03 < 0.15	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14	< 0.03 < 0.03 < 0.03 < 0.03 < 0.14	< 0.04 < 0.04 < 0.04 < 0.04 < 0.16	< 0.03 0.03 < 0.03 < 0.03 < 0.14	< 0.03 < 0.03 < 0.03 < 0.14	- - -	- -		- - -
c,d)pyrene	< 0.03 0.03 < 0.03 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03	< 0.03 < 0.03 < 0.03 < 0.03	< 0.04 < 0.04 < 0.04 < 0.04	< 0.03 0.03 < 0.03 < 0.03	< 0.03 < 0.03 < 0.03	-	- -	-	- - -
	< 0.03 0.03 < 0.03	< 0.03 < 0.03 < 0.03	< 0.03 < 0.03 < 0.03	< 0.03 < 0.03 < 0.03	< 0.04 < 0.04 < 0.04	< 0.03 0.03 < 0.03	< 0.03 < 0.03	-	-		- - -
Indeno(1 2 3-	< 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.04 < 0.04	< 0.03	< 0.03	-	-		- - -
Fluorene	< 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.03 < 0.03	< 0.04 < 0.04	< 0.03	< 0.03	-	-		-
Fluoranthene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03		-	-	-	-
Dibenzo[a,h]anth											
Chrysene		< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Benzo[k]fluorant	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Benzo[g,h,i]peryl	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Benzo[b]fluorant + Benzo[j]fluorant	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
(BAP)	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	35	2.15	-	-
Benzo[a]pyrene											
Benzo[a]anthrac	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Anthracene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	_	-
Acenaphthylene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	- 1	-
Acenaphthene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	- 1	-
Polycyclic Aromatic Hy	drocarbons										
C13 - C30	<u>\ 40</u>	<u>\ 40</u>	<u> </u>	<u>\ 40</u>	<u>\ 40</u>	\ 4U	\ 4U	-	>20,000(12)	 	-
C15 - C36	< 40	< 40	< 40	< 40	< 40	< 40	< 20 < 40	-	>20,000(12)	-	-
C10 - C14	< 9 < 20	< 20	< 9 < 20	< 8 < 20	< 10 < 20	< 20	< 9 < 20		710-2700(12) 560-1500(12)	 	-
Total Petroleum Hydro C7 - C9	carbons < 9	< 9	< 9	< 8	z 10	< 9	< 9	-	710, 2700/12\	_	
Total Datualarius Hirdus											
Zinc	31	17	33	71	16	25	16	23,000 (7)	400	180	1160
Nickel	6	9	11	5	4	17	8	1500 (7)	105	35	320
Mercury	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	4200	0.75	0.45	0.45
Lead	14.2	8.3	16.1	7.2	16.5	40	7	3300	250	65	65
Copper	10	15	15	24	7	15	10	>10,000	325	45	90
Chromium	7	14	9	6	7	17	14	6300	400	55	125
Cadmium	0.11	<0.10	0.11	<0.10	<0.10	<0.10	<0.10	1300	7.5	0.65	0.65
Arsenic	3	3	3	<2	<2	3	3	70	100	12	12
Heavy Metals (1)											
Material Type	soil	soil	soil	soil	soil	soil	soil				
Sample depth	0.1	1.0	1.0	0.1	1.0	0.1	1.0	Land Use	Schedule 10		
Date sampled (5)	9/06/2014	9/06/2014	9/06/2014	28/05/2014	28/05/2014	5/06/2014	5/06/2014	Comm/Ind			
Lab Sample Ref.	1289075.4	1289075.5	1289075.7	1283722.1	1283722.2	1289075.1	1289075.2		Limits (6)		
Field Sample Ref	0.1m	1.0m	1.0m (10)	BH202-0.1m	BH202-1.0m	0.1m	BH204-1.0m		ALW Plan PA	non volcanic	volcanic
Sample Location	вн201 ВН201-	BH201 BH201-	BH201-	BH202	BH202	BH204 BH204-	вH2U4	SGV (5)		TP15	0 (8)
Comple Lesation	BH201	DU201	BH201	etails and Anal		DUDOA	BH204	Adopted Accept	ance Criteria	Other C	

_				
4				
_				
4				
+				
-				
\dashv				
4				
1				
-				
1				
4				
4				
\exists				
\exists				
\exists				
Ⅎ				
\dashv				
╡ .				

								1			
Organochlorine Pestic											
Aldrin	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
alpha-BHC	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
beta-BHC	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
delta-BHC	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
gamma-BHC (Lindane)	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	14,000(13)	-	-
cis-Chlordane	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
trans-Chlordane	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Total Chlordane [(cis+trans)*100/42]	< 0.04	1	< 0.04	< 0.04	< 0.04	< 0.04	-	-	-	-	-
2,4'-DDD	< 0.010	1	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
4,4'-DDD	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
2,4'-DDE	< 0.010	1	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
4,4'-DDE	< 0.010	ı	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
2,4'-DDT	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	1000	12 or 0.7(11)		
4,4'-DDT	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	1000	12 01 0.7(11)	-	-
Dieldrin	< 0.010	1	< 0.010	< 0.010	< 0.010	< 0.010	-	160	190(13)	-	-
Endosulfan I	< 0.010	1	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endosulfan II	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endosulfan sulphate	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endrin	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endrin aldehyde	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endrin ketone	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Heptachlor	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Heptachlor epoxide	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Hexachlorobenzene	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Methoxychlor	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-

Notes:

- 1) All heavy metals total recoverable.
- 2) All test results in mg/kg dry weight.
- 3) National Environmental Standard- Soil Contaminant Standard or Soil Guideline Value for Commercial/Industrial Land Use, see also note 5 below
- 4) Sample depth in metres below ground level
- 5) MfE, 2011, Tables 54 & 55, Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health, for commercial/industrial, outdoor worker and maintenance
- 6) ARP:ALW (Operative in Part, 21 October 2010). It may be inferred from Note 3 of Schedule 10 that where the heavy metal limit for human health is not shown then the limit is equal or higher than the discharge limit.
- 7) United States Environmental Protection Agency (USEPA), Human Health Medium Regional Screening Levels (RSL, May 2013) International risk based SGVs for residential land use, non-cancer endpoint, all pathways.
- 8) Auckland Regional Council- Technical Publication TP153- for non-volcanic and volcanic soils- used as cleanfill values, i.e. if the site sediment is disposed off-site to a licensed cleanfill site located in a non-volcanic soil type area the non-volcanic TP153 values apply, note, maximum values stated, e.g. for arsenic the range is 0.4-12 mg/kg.
- 9) **BOLD** values: exceed the T153- non volcanic soils concentrations
- 10) Duplicate sample
- 11) The criteria 12 mg/kg applies to land that is not developed. The criteria 0.7 mg/kg applies to land that is being redevelopment does not include cultivation and the formation and maintenance of tracks) during the redevelopment phase only. Once redevelopment has been completed, the higher criteria applies.
- 12) MfE, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) Module 4 Tier 1 Soil Screening Criteria Residential land use, all pathways, for silty clay soil with surface (<1m) depth of contamination (Table 4.10) and for the protection of groundwater quality for potable use (Table 4.20) with surface contamination (<1 m) and depth to groundwater as 4 m.
- 13) MfE, Identifying, Investigating and Managing Risks Associated with Former Sheep-dipSites, November 2006 SGVs for human health for commercial/industrial (unpaved) land use- (Table 4).

APPENDIX H SEDIMENT CONTAMINATION ASSESSMENT

Project: North Harbour No. 2 Watermain - GREENHITHE SECTION ONLY

Sediment Test Results (i.e. soil test results reported seperately)

Sediment	TCSC ICC	<u> </u>	C. 3011 t	cst resur	ts repor	ica scp	ciately								Adopted				
															Adopted Acceptance				
						Sa	mple Details and	Analytical Result	:S						Criteria		Othe	r Criteria	
Sample Location	HA206	HA208	HA209	HA210a	HA210a	HA211	HA212a	HAS213	HA214a	HA215	HA217	Tab 1	Tab 2	Tab 3		TP15	3 (6)	ANZECC Se	d. Quality (7)
Field Sample Ref	HA206-0.0m	HA208-0.0m	HA209-0.0m	HA210a-0.0m	HA210a-0.5m	HA211-0.0m	HA212a-0.0m	HAS213-0.0m	HA214a-0.0m	HA215-0.0m	HA217-0.0m	Tab1, 0-0.2m	Tab2, 0-0.2m	Tab3, 0-0.2m	ARP:ALW PA	non volcanic	volcanic	ISQG-low	ISQG-high
Lab Sample Ref.	1289075.23	1297663.1	1297663.5	1293375.13	1293375.14	1289075.17	1289075.23	1293375.5	1293375.20	1293375.16	1293375.11	1355272.1	1355272.2	1355272.3	Limits (5)				, 0
Date sampled (4)	12/06/2014	1/07/2014	26/06/2014	24/06/2014	24/06/2014	11/09/2014	13/06/2014	13/06/2014	25/06/2014	25/06/2014	24/06/2014	21/11/2014	21/11/2014	21/11/2014	, ,				
Sample depth	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0-0.2	0.0-0.2	0.0-0.2	Schedule 10				
Soil Type	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment					
Heavy Metals (1)																			
Arsenic	7.3	8	8	8	<2	15.8	18	11	23	16	19	35	30	17.6	100	12	12	20	70
Cadmium	0.089	<0.10	<0.10	<0.10	<0.10	0.031	<0.10	<0.10	<0.10	<0.10	<0.10	0.04	0.046	0.039	7.5	0.65	0.65	1.5	10
Chromium	14.5	25	28	18	8	11.4	22	16	21	17	20	15.1	12.1	14.1	400	55	125	80	370
Copper	19.6	26	27	19	7	11.7	18	17	19	17	19	12.2	10.2	11	325	45	90	65	270
Lead	22	31	34	24	4.6	15.9	29	27	32	29	30	24	25	18.7	250	65	65	50	220
Mercury	0.117	<0.10	<u>0.20</u>	0.11	<0.10	0.081	0.1	0.1	0.13	0.11	0.11	0.093	0.103	0.095	0.75	0.45	0.45	0.15	1
Nickel	8.7	10	10	7	2	4.9	7	7	8	8	7	6.6	6.5	6.6	105	35	320	21	52
Zinc	97	117	125	91	14	58	95	98	119	101	106	89	91	78	400	180	1160	200	410
,																			
Total Petroleum Hyd	drocarbons																		
C7 - C9	< 40	< 30	< 30	<18	< 10	< 13	< 13	< 14	< 14	< 13	< 16	< 12	< 11	< 11	710-2700(10)	-	-	-	-
C10 - C14	< 70	< 50	< 50	< 40	< 20	< 30	< 30	< 30	< 30	< 30	< 40	< 30	< 30	< 30	560-1500(10)	-	-	-	-
C15 - C36	< 140	<100	<90	< 80	< 40	< 50	< 50	< 60	< 60	< 50	< 70	< 50	< 50	< 50	>20,000(10)	-	-	-	-
Polycyclic Aromatic	Hydrocarbons																		
Acenaphthene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	0.017	0.003	0.008	-	-	-	0.016	0.5
Acenaphthylene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	0.008	0.003	0.005	-	-	-	0.044	0.64
Anthracene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.06	0.039	0.007	0.015	-	-	-	0.085	1.1
Benzo[a]anthrac	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.13	< 0.05	< 0.06	0.121	0.025	0.062	-	-	-	0.261	1.6
Benzo[a]pyrene																			_
(BAP)	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.19	0.04	< 0.06	0.147	0.032	0.078	2.15	-	-	0.43	1.6
BaP (equiv)									0.27			0.21							
Benzo[b]fluorant +																			
Benzo[j]fluorant	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.21	0.05	< 0.06	0.169	0.04	0.091	-	-	-		
Benzo[g,h,i]peryl	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.15	0.05	< 0.06	0.093	0.024	0.052	-	-	-		
Benzo[k]fluorant	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.1	< 0.05	< 0.06	0.064	0.015	0.035	-	_	-		
Chrysene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.19	< 0.05	< 0.06	0.123	0.013	0.065	<u> </u>	_		0.384	2.8
Dibenzo[a,h]anth	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	0.123	0.005	0.003	-	_	-	0.063	0.26
Fluoranthene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	0.05	0.43	0.09	< 0.06	0.34	0.064	0.168	_	_	_	0.6	5.1
Fluorene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	0.015	0.004	0.007	_	_	_	0.019	0.54
Indeno(1,2,3-	3.22		3.00	3.00		2.00	3.00	3.00	2.00	3.00	3.00	1.020	2.300	2.30,				2.320	2.2.
c,d)pyrene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.08	< 0.05	< 0.06	0.093	0.022	0.051	-	-	-		
Naphthalene	<0.6	< 0.4	< 0.4	<0.3	< 0.16	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.012	< 0.011	< 0.011	69(10)	-	-	0.16	2.1
Phenanthrene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	<u>0.33</u>	0.06	< 0.06	0.25	0.042	0.095	-	-	-	0.24	1.5

Pyrene	< 0.11	< 0.08	< 0.08	0.07	< 0.04	< 0.05	< 0.05	0.06	0.5	0.12	0.07	0.3	0.059	0.152	1.3-1600(10)	-	-	0.665	2.6
Note: other par	rameters su	ich as Orga	nochlorine	Pesticides, T	ributyl Tin a	nd Total Or	ganic Carbor	continued	on the next	page									
Organochlorine Pest	ticides																		
Aldrin	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
alpha-BHC	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
beta-BHC	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
delta-BHC	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
gamma-BHC		. 0 040		.0.010								. 0.0040	. 0 004.0	. 0 0040	44.000(44)			0.00032	0.001
(Lindane)	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	14,000(11)	-	-		
cis-Chlordane	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	
trans-Chlordane Total Chlordane	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.0005	0.006
[(cis+trans)*100/42																			
]	< 0.04	< 0.04	< 0.04	< 0.04	-		< 0.04	-	< 0.04			< 0.0020	< 0.0020	< 0.0020	-	-			
2,4'-DDD	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.002	0.03
4,4'-DDD	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.002	0.02
2,4'-DDE	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.0022	0.027
4,4'-DDE	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.0022	0.027
2,4'-DDT	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	12 05 0 7/12)			0.0016	0.046
4,4'-DDT	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	12 or 0.7(12)	-	-	0.0016	0.046
Dieldrin	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	190(11)	-	-	0.00002	0.008
Endosulfan I	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Endosulfan II	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	1
Endosulfan																			
sulphate 	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Endrin	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.00003	0.008
Endrin aldehyde	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.00002	0.008
Endrin ketone	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-		
Heptachlor	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Heptachlor epoxide	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Hexachlorobenzene	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Methoxychlor	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Tributyl Tin																			
Dibutyltin	<0.005	<0.005	<0.005	<0.005	-	-	<0.005	-	<0.005	-	-	<0.005	-	-	-	-	-	-	-
Monobutyltin	<0.007	<0.007	<0.007	<0.007	-	-	<0.007	-	<0.007	-	-	<0.007	-	-	-	-	-	-	-
Tributyltin	<0.004	<0.004	<0.004	<0.004	-	-	<0.004	-	<0.004	-	-	<0.004	-	-	-	-	-	0.005	0.07
Triphenyltin	<0.003	<0.003	<0.003	<0.003	-	-	<0.003	-	<0.003	-	-	<0.003	-	-	-	-	-	-	-
Total Organic Carbo	0.99	4.2	-	2.2	-	4.0	1.56	1.26	1.54	1.31	1.41	0.94	0.84	0.87	-	-	-	-	-

Notes:

- 1) All heavy metals total recoverable.
- 2) All test results in mg/kg dry weight.
- 3) All TPH, PaH, OCP and TBT test results less that the detection limit of the laboratory analytical equipment
- 4) Sample depth in metres below ground level

- 5) ALW Plan (Operative in Part, 21 October 2010). It may be inferred from Note 3 of Schedule 10 that where the heavy metal limit for human health is not shown then the limit is equal or higher than the discharge limit.
- 6) Auckland Regional Council- Technical Publication TP153- for non-volcanic and volcanic soils- used as cleanfill values, i.e. if the site sediment is disposed off-site to a licensed cleanfill site located in a non-volcanic soil type area the non-volcanic TP153 values apply, note, maximum values stated, e.g. for arsenic the range is 0.4-12 mg/kg.
- 7) Austarlian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC) Guidelines, October 2000, Sediment Quality Guidelines, Table 3.5.1- Interim Sediment Quality Guideline (ISQG) Low (trigger value) and ISQG high
- 8) **BOLD** values: exceed the T153- non volcanic soils concentrations
- 9) Underline value: exceeds the ISQG-low value.
- 10) MfE, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) Module 4 Tier 1 Soil Screening Criteria Residential land use, all pathways, for silty clay soil with surface (<1m) depth of contamination (Table 4.10) and for the protection of groundwater quality for potable use (Table 4.20) with surface contamination (<1 m) and depth to groundwater as 4 m.
- 11) MfE, Identifying, Investigating and Managing Risks Associated with Former Sheep-dipSites, November 2006 SGVs for human health for commercial/industrial (unpaved) land use- (Table 4).
- 12) The criteria 12 mg/kg applies to land that is not developed. The criteria 0.7 mg/kg applies to land that is being redeveloped (redevelopment does not include cultivation and the formation and maintenance of tracks) during the redevelopment phase only. Once redevelopment has been completed, the higher criteria applies.

APPENDIX I UPPER CONFIDENCE LIMIT- HEAVY METALS

1	A B C D E	F	G H I J K ensored Full Data Sets	L
	OCL State	sucs for Offic	erisoreu Puli Data Sets	
2	User Selected Options			
3	Date/Time of Computation 15/12/2014 9:30:46 a.m.			
4	From File WorkSheet.xls			
5	Full Precision OFF			
6	Confidence Coefficient 95%			
7 8	Number of Bootstrap Operations 2000			
9				
10				
	Arsenic			
12				
13		General	Statistics	
14	Total Number of Observations	14	Number of Distinct Observations	12
15			Number of Missing Observations	0
16	Minimum	1	Mean	15.55
17	Maximum	35	Median	15.9
18	SD	9.35	Std. Error of Mean	2.499
19	Coefficient of Variation	0.601	Skewness	0.64
20				
21			GOF Test	
22	Shapiro Wilk Test Statistic	0.946	Shapiro Wilk GOF Test	
23	5% Shapiro Wilk Critical Value	0.874	Data appear Normal at 5% Significance Level	
24	Lilliefors Test Statistic	0.147	Lilliefors GOF Test	
25	5% Lilliefors Critical Value	0.237	Data appear Normal at 5% Significance Level t 5% Significance Level	
26	Бата арре	ar Normai a	1 5% Significance Level	
27	Δο	suming Nor	mal Distribution	
28	95% Normal UCL	Sulling Non	95% UCLs (Adjusted for Skewness)	
29	95% Student's-t UCL	19.98	95% Adjusted-CLT UCL (Chen-1995)	20.12
30				
			95% Modified-t UCL (Johnson-1978)	20.05
31			95% Modified-t UCL (Johnson-1978)	
32		Gamma	95% Modified-t UCL (Johnson-1978) GOF Test	
32 33	A-D Test Statistic	Gamma 0.418	1	
32 33 34	A-D Test Statistic 5% A-D Critical Value		GOF Test	20.05
32 33 34 35		0.418	GOF Test Anderson-Darling Gamma GOF Test	20.05
32 33 34	5% A-D Critical Value	0.418 0.745	GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	20.05
32 33 34 35 36	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.418 0.745 0.171 0.231	GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test	20.05
32 33 34 35 36 37	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value	0.418 0.745 0.171 0.231	GOF Test Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance	20.05
32 33 34 35 36 37 38	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear	0.418 0.745 0.171 0.231 r Gamma Di	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	20.05 e Level
32 33 34 35 36 37 38 39	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE)	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE)	20.05 e Level 1.754
32 33 34 35 36 37 38 39 40	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE)	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)	20.05 e Level e Level 1.754 8.865
32 33 34 35 36 37 38 39 40 41	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected)	20.05 E Level 1.754 8.865 49.12
32 33 34 35 36 37 38 39 40 41 42	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE)	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	20.05 E Level 1.754 8.865 49.12 11.74
32 33 34 35 36 37 38 39 40 41 42 43 44 45	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected)	0.418 0.745 0.171 0.231 Gamma Di Gamma 2.172 7.159 60.81 15.55	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	20.05 E Level 1.754 8.865 49.12 11.74 34.03
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE)	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	20.05 E Level 1.754 8.865 49.12 11.74
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81 15.55	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.05 E Level 1.754 8.865 49.12 11.74 34.03
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81 15.55	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.05 E Level 1.754 8.865 49.12 11.74 34.03 32.37
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81 15.55	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.05 E Level 1.754 8.865 49.12 11.74 34.03
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81 15.55 0.0312 suming Gam 22.45	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.05 E Level 1.754 8.865 49.12 11.74 34.03 32.37
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50))	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81 15.55 0.0312 suming Gam 22.45 Lognorma	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.05 E Level 1.754 8.865 49.12 11.74 34.03 32.37
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance As: 95% Approximate Gamma UCL (use when n>=50)) Shapiro Wilk Test Statistic	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81 15.55 0.0312 suming Gam 22.45 Lognorma 0.832	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value mma Distribution 95% Adjusted Gamma UCL (use when n<50)	20.05 E Level 1.754 8.865 49.12 11.74 34.03 32.37
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51	5% A-D Critical Value K-S Test Statistic 5% K-S Critical Value Detected data appear k hat (MLE) Theta hat (MLE) nu hat (MLE) MLE Mean (bias corrected) Adjusted Level of Significance Ass 95% Approximate Gamma UCL (use when n>=50))	0.418 0.745 0.171 0.231 r Gamma Di Gamma 2.172 7.159 60.81 15.55 0.0312 suming Gam 22.45 Lognorma	Anderson-Darling Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance Kolmogrov-Smirnoff Gamma GOF Test Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	20.05 E Level 1.754 8.865 49.12 11.74 34.03 32.37

	Α	В	С	D	E	F	G	Н	I	J	K	L
55				5% Lilliefors (0.237				at 5% Signifi	cance Level	
56				Data a	ppear Approx	ximate Logr	ormal at 5%	Significance	e Level			
57						Lognorma	l Statistics					
58				Minimum of I	onned Data	0	i Glausiics			Mean of	logged Data	2.497
59				Maximum of I	••	3.555					logged Data	
60				Waxiiriaiii oi i	oggod Data	0.000					loggod Data	0.070
61 62					Assu	ıming Logno	ormal Distrib	ution				
63					95% H-UCL	33.56			90%	Chebyshev (I	MVUE) UCL	30.2
64			95	% Chebyshev (MVUE) UCL	36.08			97.5%	Chebyshev (f	MVUE) UCL	44.24
65			99	% Chebyshev (MVUE) UCL	60.27						
66					<u>l</u>							.1
67					Nonparame	tric Distribu	tion Free UC	L Statistics				
68				Data appea	r to follow a [Discernible	Distribution a	at 5% Signifi	cance Level			
69												
70					-		tribution Fre	e UCLs				
71					% CLT UCL	19.66					ckknife UCL	19.98
72			9!	5% Standard Bo	•	19.53			050/		tstrap-t UCL	20.94
73				95% Hall's Bo	•	21.07			95% I	Percentile Bo	otstrap UCL	19.64
74			000/	95% BCA Bo		19.84 23.05			050/ 05		0-1/1101	26.44
75				Chebyshev(Me Chebyshev(Me		31.16				ebyshev(Mea ebyshev(Mea	•	40.41
76			97.5%	Chebyshev(ivie	an, Su) UCL	31.10			99% CI	iebysnev(iviea	an, Su) UCL	40.41
77						Suggested	UCL to Use					
78				95% Stu	dent's-t UCL	19.98						<u> </u>
79					401101002	.0.00						
80		Note: Sugge	estions reg	arding the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	l nost appropria	l ate 95% UCL	
82				tions are based								
83			and Sir	gh and Singh (2	2003). Howev	er, simulatio	ns results wi	ill not cover a	all Real Worl	d data sets.		
84				For ad	ditional insigh	nt the user m	nay want to c	onsult a stati	stician.			
85												
86												
87	Cadmium											
88												
89							Statistics					
90			To	otal Number of C	bservations	14				r of Distinct O		
91						0.004			Number	of Missing O		
92					Minimum Maximum	0.031					Mean Median	0.0496 0.05
93					SD	0.089				Std E	rror of Mean	0.03
94				Coefficien	t of Variation	0.0128				Jiu. El	Skewness	
95				230,1101011								1
96						Normal (GOF Test					
97 98				Shapiro Wilk	Test Statistic	0.657			Shapiro Wi	lk GOF Test		
99			5%	Shapiro Wilk 0		0.874		Data No	-	5% Significan		
100				Lilliefors	Test Statistic	0.417			Lilliefors	GOF Test		
101				5% Lilliefors C	Critical Value	0.237		Data No	t Normal at 5	5% Significan	ice Level	
102					Data Not	Normal at 5	% Significar	nce Level				
103												
104					Ass	suming Nor	mal Distribut					
105			95%	Normal UCL					, ,	sted for Skev	•	
106				95% Stu	dent's-t UCL	0.0557				ed-CLT UCL (,	
107									95% Modifie	ed-t UCL (Joh	nnson-1978)	0.056
108												

100	Α	В		С		D		Е	F Gamma	G GOF Test		Н		I		J		K		L	=
109						A-D	Test S	Statistic	1.859			And	dersor	n-Darli	ing Ga	amma G	OF	Test			
110					59	% A-D	Critica	al Value	0.734		Data				•	at 5% S				vel	
111						K-S	Test S	Statistic	0.386			Koln	nogrov	/-Smir	noff G	amma	GOF	F Tes	t		
113					59	% K-S	Critica	al Value	0.228		Data	Not G	amma	Distril	buted	at 5% S	Signi	ficand	ce Le	vel	
114						D	ata N	ot Gamn	na Distribut	ed at 5% S	Signifi	icance	Level								
115																					
116									Gamma	Statistics											
117								t (MLE)	19.83							r (bias c				15.6	
118						Th		t (MLE)	0.0025					The		r (bias c			-	0.00	
119						(1.3		t (MLE)	555.1							u star (l					
120				IVI	LE IVI	ean (b	ias coi	rected)	0.0496				Λnr	orovim		LE Sd (I ni Squai			,	390	126
121				Δdius	tod I	evel o	f Siani	ficance	0.0312				App	JIOXIIII		sted Chi		`			1
122				Aujus	Sieu L	evel 0	n Sigili	licarice	0.0312						Aujus	Sieu Cili	ı oqu	uale	- alue	304.	_
123								Ass	uming Gan	ma Distrik	oution	<u> </u>									
124		95% Appro	ximate	Gamma	uCL	. (use \	when r		0.0557				Adjus	ted Ga	amma	UCL (u:	se w	hen r	า<50)	0.0	566
125 126								//					-,								
127									Lognorma	GOF Tes	t										
128				S	Shapir	o Wilk	Test S	Statistic	0.75			SI	napiro	Wilk L	Logno	rmal Go	OF T	Test			
129				5% S	hapir	o Wilk	Critica	l Value	0.874			Data N	ot Log	norma	al at 59	% Signif	fican	ice Le	evel		
130					Lil	lliefors	Test S	Statistic	0.371				Lillief	ors Lo	gnorm	nal GOF	Tes	st			
131				5	% Lill	liefors	Critica	l Value	0.237			Data N	ot Log	norma	al at 5°	% Signif	fican	ice Le	evel		
132							Da	ta Not L	ognormal a	5% Signif	fican	ce Leve	el								
133																					
134									Lognorma	I Statistics	\$										
135								ed Data	-3.474							Mean					
136					Maxin	num of	Logge	ed Data	-2.419							SD	of lo	gged	Data	0.2	26
137								٨٥٥١١	ming Logno	rmal Dietr	ibutic										
138							95%	H-UCL	0.0557		ibuud)		90	1% Ch	ebyshev	v (NA)	\/ E\	ПСІ	0.0	586
139				95%	Cheh	vshev		E) UCL	0.0627							ebyshev	•	•		0.00	
140						•	`	E) UCL	0.0795						70 0		. (-	
141								,													
142 143							Nor	parame	tric Distribu	tion Free l	JCL :	Statisti	cs								
144							Data	do not fo	ollow a Disc	ernible Dis	stribu	tion (0	.05)								
145																					
146								Nonpar	ametric Dis	tribution F	ree U	ICLs									
147						9	95% CI	LT UCL	0.0553							95%	Jack	knife	UCL	0.0	557
148								ap UCL	0.055							95% B	oots	trap-t	UCL	0.0	584
149								ap UCL	0.0838					95	% Per	centile	Boot	tstrap	UCL	0.0	556
150								ap UCL	0.057						<u> </u>					<u> </u>	0.15
151				90% Ch		•		·	0.0599							yshev(N					
152			9	7.5% Ch	nebys	nev(M	ean, S	a) UCL	0.0709					99%	Cheb	yshev(N	viear	1, Sd)	UCL	0.08	536
153									Suggested		•										
154					0	5% \$+	udent'	s-t UCL	0.0557		-C					or 95% I	Modi	ified_t	וורו	0.0	56
155						.J /0 JU	uu c iii:	5-1 OOL	0.0007							, JJ /0 I	ivioul	cu-l		0.00	-
156		Note: Sua	gestior	ns regard	dina th	ne sele	ection o	of a 95%	UCL are pr	ovided to h	nelp tl	ne usei	r to se	lect the	e mos	t appror	oriate	e 95%	6 UCI	<u> </u>	
157									ults of the si		-										
158 159									er, simulatio									•			
160							` '		nt the user m												
161																					
162																					
. 52																					

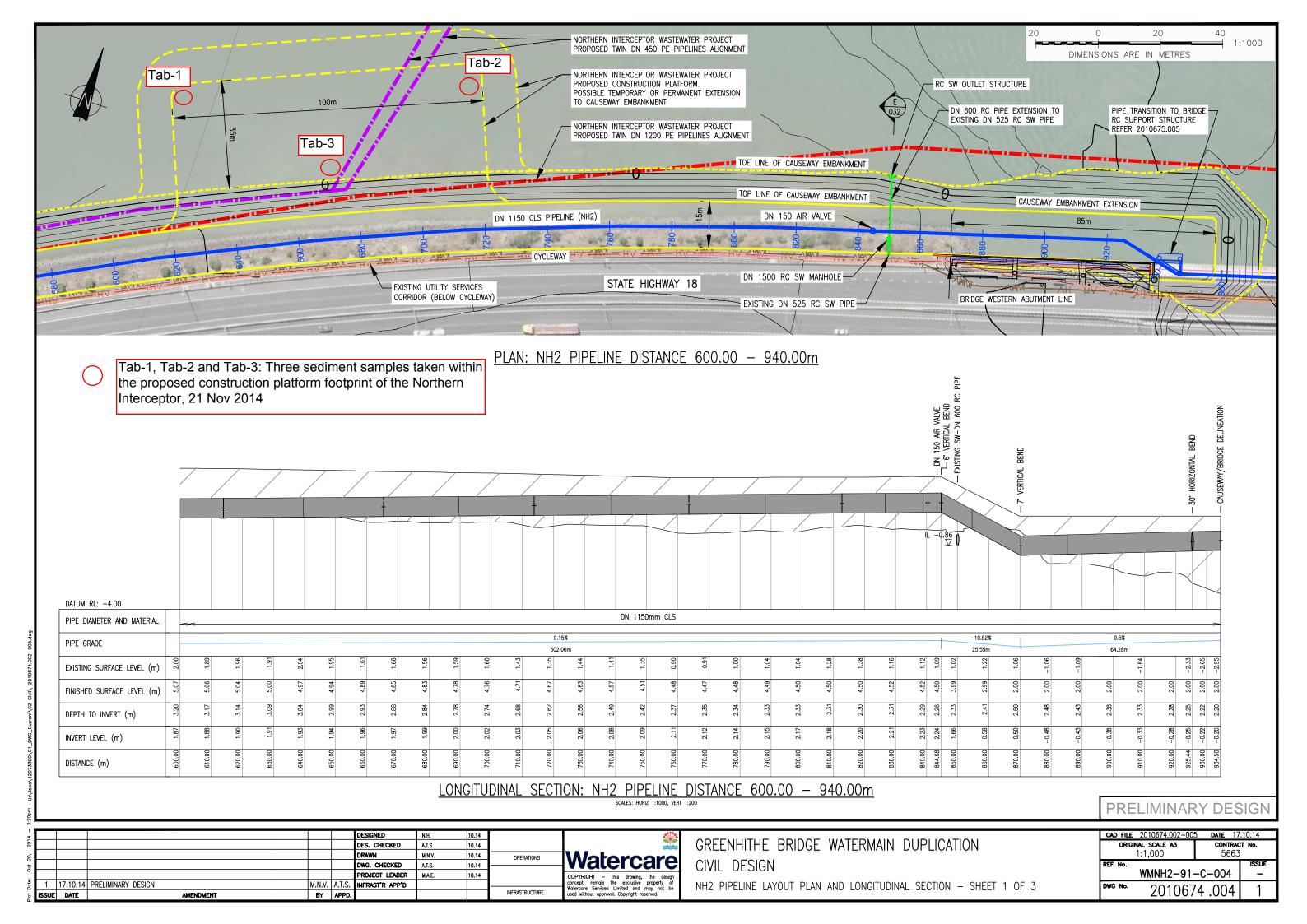
	A B C D E	F	G H I J K	L
₁₆₃ Ch	romium			
164				
165	-	General \$		
166	Total Number of Observations	14	Number of Distinct Observations	14
167		_	Number of Missing Observations	0
168	Minimum	8	Mean	17.3
169	Maximum	28	Median	16.5
170	SD	5.48	Std. Error of Mean	1.465
171	Coefficient of Variation	0.317	Skewness	0.348
172				
173		Normal G		
174	Shapiro Wilk Test Statistic	0.985	Shapiro Wilk GOF Test	
175	5% Shapiro Wilk Critical Value	0.874	Data appear Normal at 5% Significance Level	
176	Lilliefors Test Statistic	0.0938	Lilliefors GOF Test	
177	5% Lilliefors Critical Value	0.237	Data appear Normal at 5% Significance Level	
178	Data appea	ar Normal at	5% Significance Level	
179				
180	Ass	suming Norn	nal Distribution	
181	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
182	95% Student's-t UCL	19.89	95% Adjusted-CLT UCL (Chen-1995)	19.85
183			95% Modified-t UCL (Johnson-1978)	19.92
184				
185		Gamma C	GOF Test	
186	A-D Test Statistic	0.109	Anderson-Darling Gamma GOF Test	
187	5% A-D Critical Value	0.735	Detected data appear Gamma Distributed at 5% Significance	e Level
188	K-S Test Statistic	0.084	Kolmogrov-Smirnoff Gamma GOF Test	
189	5% K-S Critical Value	0.229	Detected data appear Gamma Distributed at 5% Significance	e Level
190	Detected data appear	Gamma Dis	stributed at 5% Significance Level	
191				
192		Gamma	Statistics	
193	k hat (MLE)	10.31	k star (bias corrected MLE)	8.147
194	Theta hat (MLE)	1.678	Theta star (bias corrected MLE)	2.124
195	nu hat (MLE)	288.6	nu star (bias corrected)	228.1
196	MLE Mean (bias corrected)	17.3	MLE Sd (bias corrected)	6.061
197			Approximate Chi Square Value (0.05)	194.1
198	Adjusted Level of Significance	0.0312	Adjusted Chi Square Value	190
199				
200	Ass	uming Gam	ma Distribution	
201	95% Approximate Gamma UCL (use when n>=50))	20.33	95% Adjusted Gamma UCL (use when n<50)	20.77
202				
203		Lognormal	GOF Test	
204	Shapiro Wilk Test Statistic	0.982	Shapiro Wilk Lognormal GOF Test	
205	5% Shapiro Wilk Critical Value	0.874	Data appear Lognormal at 5% Significance Level	
206	Lilliefors Test Statistic	0.107	Lilliefors Lognormal GOF Test	
207	5% Lilliefors Critical Value	0.237	Data appear Lognormal at 5% Significance Level	
			at 5% Significance Level	
208			-	
209		Lognormal	Statistics	
210	Minimum of Logged Data	2.079	Mean of logged Data	2.801
211	Maximum of Logged Data	3.332	SD of logged Data	0.333
212		- ·	52 5.189954 Bald	
213	Αοοιι	mina Loano	rmal Distribution	
214		20.8	90% Chebyshev (MVUE) UCL	22.03
	95% H-11CL	70.0	90 / Called to the control of the co	// 0.3
215 216	95% H-UCL 95% Chebyshev (MVUE) UCL	24.16	97.5% Chebyshev (MVUE) UCL	27.12

	Α	В	С	T D	E	F	G	Тн		1	J	ГК	l ı
217			_		/ (MVUE) UCL	-	u			'	J	I K	
218						1							ļ
219					Nonparam	etric Distribu	tion Free U	CL Statist	ics				
220				Data app	ear to follow a	Discernible	Distribution	at 5% Sig	nificance	e Level			
221													
222					Nonpa	rametric Dis	tribution Fr	ee UCLs					
223					95% CLT UCL	. 19.71					95% J	ackknife UCL	19.89
224			959	% Standard	Bootstrap UCL	. 19.62					95% Bo	otstrap-t UCL	19.91
225				95% Hall's	Bootstrap UCL	. 19.8				95% F	Percentile B	ootstrap UCL	19.57
226				95% BCA	Bootstrap UCL	. 19.76							
227			90% C	Chebyshev(N	lean, Sd) UCL	. 21.69			9	5% Ch	ebyshev(Me	ean, Sd) UCL	23.68
228			97.5% C	Chebyshev(N	lean, Sd) UCL	26.45			9	9% Ch	ebyshev(Me	ean, Sd) UCL	31.87
229						1	1						I .
230						Suggested	UCL to Us	е					
231				95% S	tudent's-t UCL	. 19.89							
232						1							
233		Note: Sugge	estions rega	rding the sel	ection of a 95°	% UCL are pr	ovided to he	elp the use	er to selec	t the m	ost appropr	iate 95% UCI	
234		These red	commendati	ons are base	ed upon the re	sults of the si	mulation st	udies sum	marized i	n Singh	n, Singh, and	d laci (2002)	
235			and Sing	h and Singh	(2003). Howe	ver, simulation	ons results v	will not cov	er all Rea	al World	d data sets.		
236				For	additional insig	the user n	nay want to	consult a	statisticia	n.			
237			-										
238													
239	Copper												
240													
241	General Statistics												
242			Tota	al Number o	f Observations	14			1	Number	of Distinct	Observations	11
243									١	lumber	of Missing	Observations	0
244					Minimum	7						Mean	16.69
245					Maximum	27						Median	17.5
246					SD	5.77					Std. I	Error of Mean	1.542
247				Coefficie	ent of Variation	0.346						Skewness	0.178
248							1						Į.
249						Normal (GOF Test						
250				Shapiro Will	k Test Statistic	0.942			Shap	oiro Wi	lk GOF Tes	t	
251			5%	Shapiro Wilk	Critical Value	0.874		Data a	ppear No	ormal at	t 5% Signific	ance Level	
252				Lilliefor	s Test Statistic	0.164			Lil	liefors	GOF Test		
253				5% Lilliefors	Critical Value	0.237		Data a	ppear No	ormal at	t 5% Signific	cance Level	
254					Data appe	ear Normal a	t 5% Signifi	cance Lev	rel				
255													
256					As	ssuming Nor	mal Distribu	ution					
257			95% 1	Normal UCL				9	5% UCL	s (Adju	sted for Ske	ewness)	
258				95% S	tudent's-t UCL	. 19.42			95% /	Adjuste	d-CLT UCL	(Chen-1995)	19.31
259									95%	Modifie	ed-t UCL (Jo	hnson-1978)	19.44
260													
261						Gamma	GOF Test						
262				A-0	Test Statistic	0.465	Anderson-Darling Gamma GOF Test						
263				5% A-D	Critical Value	0.736	Detect	ed data ap	pear Gar	nma Di	stributed at	5% Significar	ice Level
264				K-9	S Test Statistic	0.21		Kol	mogrov-S	Smirnof	f Gamma G	OF Test	
265				5% K-S	Critical Value	/alue 0.229 Detected data appear Gamma Distributed at 5% Significance Le							ice Level
266	Detected data appear					ar Gamma Distributed at 5% Significance Level							
267													
268						Gamma	Statistics						
269					k hat (MLE)	8.275				k s	star (bias co	rrected MLE)	6.549
270				TI	neta hat (MLE)	2.017				Theta	star (bias co	rrected MLE)	2.549
													•

	Α	В		С	D	Е		F	G		Н		I		J		K	L
271						nu hat (ML	•	231.7							nu star (t			183.4
272				M	LE Mean	(bias correcte	ed)	16.69							MLE Sd (l		•	6.523
273												Α	pproxim		Chi Squar		` /	153.1
274				Adju	sted Leve	el of Significar	nce	0.0312						Adj	usted Chi	Squar	re Value	149.4
275																		
276								ming Gam	ıma Distr	ibuti								
277		95% Approx	ximate	Gamm	a UCL (us	se when n>=5	50))	20			95%	Adju	isted Ga	amm	a UCL (us	se whe	n n<50)	20.49
278																		
279								_ognormal	GOF Te	st								
280						/ilk Test Statis		0.93							normal Go			
281				5% S		ilk Critical Va		0.874			Data ap				at 5% Sigr		ce Level	
282						ors Test Statis		0.227						-	rmal GOF			
283				5	5% Lilliefo	ors Critical Va		0.237			•	•	Lognor	mal a	at 5% Sigr	nificano	ce Level	
284						Data app	ear Lo	ognormal	at 5% Sig	nific	cance Lo	evel						
285																		
286								Lognorma	l Statistic	s								
287						of Logged Da		1.946									ed Data	2.753
288					Maximum	of Logged Da	ata	3.296							SD	of logg	ed Data	0.378
289																		
290								ing Logno	rmal Dist	tribu	tion							
291						95% H-U		20.7							Chebyshe	`		21.92
292						ev (MVUE) U		24.26					97.5	5% C	Chebyshe	/ (MVU	JE) UCL	27.51
293				99%	Chebysh	ev (MVUE) U	JCL	33.88										
294																		
295								ic Distribu										
296					Data ap	pear to follow	v a Dis	scernible l	Distributio	on a	t 5% Sig	gnific	ance Le	evel				
297																		
298								metric Dist	tribution f	ree	UCLs							
299						95% CLT U		19.23									ife UCL	19.42
300						d Bootstrap U		19.15									p-t UCL	19.47
301						s Bootstrap U		19.62					95	5% P	ercentile I	Bootstr	rap UCL	19.14
302						A Bootstrap U		19.21					050/				2 1) 1101	00.44
303					-	(Mean, Sd) U		21.32							ebyshev(N			23.41
304			9.	7.5% CI	nebyshev	(Mean, Sd) U	ICL	26.32					99%	Che	ebyshev(N	lean, S	Sd) UCL	32.04
305										1								
306					0.50/	0. 1		uggested	UCL to U	se								
307					95%	Student's-t U	ICL	19.42								1		
308		Notes Occur				-1	050/ 11	101		la a la	41		-14-4				VE0/ 1101	
309						election of a 9												•
310		i nese re				sed upon the											(2002)	
311			an	u əingr		gh (2003). How								vorid	uata SetS			
312					F0	r additional in	isigi it t	uic usei II	ay Walii i	.U UU	nisuit a S	อเสแร	ucidil.					
313																		
314	Lead																	
313	Ledu																	
316								General	Statistics									
317				Toto	l Numbor	of Observation	one	14	JausiiCS				Nive	nhor	of Distinc	· Obsa	rvations	12
318				ı Old	i ivuiliD C l	or Onservatio	0110	17							of Missing			0
319						Minim	um	4.6					inuit	in c l (UI IVIISSIIIQ	Jobse	Mean	24.73
320						Maxim		34									Median	24.73
321							SD	7.724							C+4		of Mean	2.064
322		Coefficient of Variation					0.312							Siù.		ewness	-1.43	
323					Coeiil	oranı di Agilgi		0.312								ЭК	ewiless	-1.43
324																		

325	A B C D E	F Normal (G H I J K GOF Test	L
326	Shapiro Wilk Test Statistic	0.89	Shapiro Wilk GOF Test	
327	5% Shapiro Wilk Critical Value	0.874	Data appear Normal at 5% Significance Level	
328	Lilliefors Test Statistic	0.177	Lilliefors GOF Test	
329	5% Lilliefors Critical Value	0.237	Data appear Normal at 5% Significance Level	
330	Data appea	ar Normal at	5% Significance Level	
331				
332		suming Norr	nal Distribution	
333	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
334	95% Student's-t UCL	28.38	95% Adjusted-CLT UCL (Chen-1995)	27.28
335			95% Modified-t UCL (Johnson-1978)	28.25
336		Commo	GOF Test	
337	A-D Test Statistic	1.177	Anderson-Darling Gamma GOF Test	
338	5% A-D Critical Value	0.737	Data Not Gamma Distributed at 5% Significance Leve	ı
339	K-S Test Statistic	0.239	Kolmogrov-Smirnoff Gamma GOF Test	
340	5% K-S Critical Value	0.229	Data Not Gamma Distributed at 5% Significance Leve	ı
341			ed at 5% Significance Level	•
342				
343		Gamma	Statistics	
344 345	k hat (MLE)	6.161	k star (bias corrected MLE)	4.889
346	Theta hat (MLE)	4.014	Theta star (bias corrected MLE)	5.058
347	nu hat (MLE)	172.5	nu star (bias corrected)	136.9
348	MLE Mean (bias corrected)	24.73	MLE Sd (bias corrected)	11.18
349			Approximate Chi Square Value (0.05)	110.8
350	Adjusted Level of Significance	0.0312	Adjusted Chi Square Value	107.7
351				
352	Ass	suming Gam	ma Distribution	
353	95% Approximate Gamma UCL (use when n>=50))	30.54	95% Adjusted Gamma UCL (use when n<50)	31.42
354				
355			GOF Test	
356	Shapiro Wilk Test Statistic	0.676	Shapiro Wilk Lognormal GOF Test	
357	5% Shapiro Wilk Critical Value	0.874	Data Not Lognormal at 5% Significance Level	
358	Lilliefors Test Statistic 5% Lilliefors Critical Value	0.259	Lilliefors Lognormal GOF Test	
359			Data Not Lognormal at 5% Significance Level 5% Significance Level	
360	Data Not E	ognornal at	3 % Significance Level	
361		Lognorma	I Statistics	
362	Minimum of Logged Data	1.526	Mean of logged Data	3.125
363	Maximum of Logged Data	3.526	SD of logged Data	0.506
364 365				
366	Assu	ıming Logno	rmal Distribution	
367	95% H-UCL	34.33	90% Chebyshev (MVUE) UCL	36.3
368	95% Chebyshev (MVUE) UCL	41.15	97.5% Chebyshev (MVUE) UCL	47.87
369	99% Chebyshev (MVUE) UCL	61.08		
370				
371	Nonparame	tric Distribu	tion Free UCL Statistics	
372	Data appear to follow a [Discernible I	Distribution at 5% Significance Level	
373				
374			tribution Free UCLs	
375	95% CLT UCL	28.12	95% Jackknife UCL	28.38
376	95% Standard Bootstrap UCL	28.12	95% Bootstrap-t UCL	27.77
377	95% Hall's Bootstrap UCL	27.44	95% Percentile Bootstrap UCL	27.79
378	95% BCA Bootstrap UCL	27.41		

	Δ.	Т Б	-	_	т.			1 .	_			1 ,		1 1/ 1	-
379	A	В		C 90% Ch	_	o ev(Mea	E nn, Sd) UC	L 30.		G	Н	95% Ch	J nebyshev(M	K ean, Sd) UCL	33.73
380			97	7.5% Ch	ebysh	ev(Mea	ın, Sd) UC	L 37.	62			99% Cl	nebyshev(M	ean, Sd) UCL	45.27
381								ļ							
382								Sugg	ested	UCL to Use					
383					95	% Stud	lent's-t UC	L 28.	38						
384								ļ							
385		Note: Sugg	estion	s regard	ling the	select	ion of a 95	5% UCL	are pr	ovided to hel	p the user to	o select the n	nost approp	riate 95% UCL	•
386		These re	ecomm	endation	ns are	based	upon the r	esults of	the si	mulation stud	dies summa	rized in Sing	h, Singh, an	d laci (2002)	
387			an	d Singh	and Si	ngh (20	003). How	ever, sin	nulatio	ons results w	ill not cover	all Real Worl	d data sets.		
388						or add	litional ins	ight the ι	user m	nay want to c	onsult a stat	tistician.			
389															
390		Note: Fo										ognormal, a		may not be	
391			re	liable.	Chen's	and J	ohnson's i	methods	provi	de adjustme	nts for posit	tvely skewed	l data sets.		
392															
393															
394	Mercury														
395										Ctatiatian					
396				Total	Numb	or of O	bservation		nerai	Statistics		Numbo	r of Distinct	Observations	10
397				TOlai	INUITID	ei di O	DSEI VAIIOI	15 14						Observations	0
398							Minimu	m 0.0	15			Numbe	i oi iviissiriy	Mean	0.104
399							Maximu							Median	0.104
400							S		359				Std	Error of Mean	0.0096
401					Coe	fficient	of Variation		347					Skewness	1.165
402								•••						G. G	
403								No	rmal (GOF Test					
404 405				S	hapiro	Wilk T	est Statist	ic 0.8	358			Shapiro W	ilk GOF Tes	 st	
406							ritical Valu		374		Data No	ot Normal at			
407					Lilli	efors T	est Statist	ic 0.2	214			Lilliefors	GOF Test		
408				5	% Lillie	efors C	ritical Valu	ie 0.2	237		Data app	ear Normal a	ıt 5% Signifi	cance Level	
409						Data	appear Ap	proxima	ite No	rmal at 5% S	Significance	Level			
410															
411							-	Assumin	g Nor	mal Distribut	ion				
412				95% No	ormal (JCL					95%	6 UCLs (Adju	sted for Sk	ewness)	
413					95	% Stud	lent's-t UC	L 0.	12			95% Adjuste	ed-CLT UCL	(Chen-1995)	0.122
414												95% Modifi	ed-t UCL (J	ohnson-1978)	0.121
415															
416							_			GOF Test					
417							est Statist		762	_		rson-Darling			
418					5%		ritical Valu		735	D				gnificance Lev	el
419					E0/		est Statist ritical Valu		203 229	Detecto		grov-Smirno			
420												ficance Leve		5% Significan	ce Level
421					Detec	ieu ua	la lollow A	үрг. ча	IIIIIIa	Distribution	at 5% Sigilii	iicarice Leve			
422								Ga	mma	Statistics					
423							k hat (MLE		202			k	star (bias co	orrected MLE)	7.277
424							a hat (MLE	,	112				•	orrected MLE)	0.0142
425							u hat (MLE	1					•	ias corrected)	203.8
426				MI	LE Mea		s corrected	,	104				•	ias corrected)	0.0384
427								1				Approximate	`	e Value (0.05)	171.7
428 429				Adjus	sted Le	vel of S	Significano	e 0.0	312			• • • • • • • • • • • • • • • • • • • •		Square Value	167.8
430										1				-	
431							Α	ssuming	g Gan	nma Distribu	tion				
432		95% Approx	kimate	Gamma	uCL (use wh			123			djusted Gam	ma UCL (us	e when n<50)	0.126
- 10∠										<u> </u>			-	•	


	A B C D E	F	G H I J K	L
433			LOOFT	
434	Chanica Will, Took Chakiakia		GOF Test	
435	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.882	Shapiro Wilk Lognormal GOF Test	
436	5% Snapiro Wilk Critical Value Lilliefors Test Statistic	0.874	Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	
437	5% Lilliefors Critical Value	0.227	Data appear Lognormal at 5% Significance Level	
438			at 5% Significance Level	
439	Бака арреаг	Logiloilliai	at 5 % Significance Level	
440		Lognorma	Il Statistics	
441	Minimum of Logged Data	-2.996		2.324
442	Maximum of Logged Data	-1.609		0.352
443			100	
444 445	Assu	ming Logno	ormal Distribution	
	95% H-UCL	0.126		0.133
446 447	95% Chebyshev (MVUE) UCL	0.147		0.165
448	99% Chebyshev (MVUE) UCL	0.202	, , ,	
449			<u> </u>	
450	Nonparame	tric Distribu	tion Free UCL Statistics	
451	Data appear to follow a D	Discernible	Distribution at 5% Significance Level	
452				
453	Nonpar	ametric Dis	tribution Free UCLs	
454	95% CLT UCL	0.119	95% Jackknife UCL	0.12
455	95% Standard Bootstrap UCL	0.119	95% Bootstrap-t UCL	0.124
456	95% Hall's Bootstrap UCL	0.14	95% Percentile Bootstrap UCL	0.12
457	95% BCA Bootstrap UCL	0.123		
458	90% Chebyshev(Mean, Sd) UCL	0.132	95% Chebyshev(Mean, Sd) UCL	0.145
459	97.5% Chebyshev(Mean, Sd) UCL	0.163	99% Chebyshev(Mean, Sd) UCL	0.199
460			1	
461		Suggested	UCL to Use	
462	95% Student's-t UCL	0.12		
463				
464			ovided to help the user to select the most appropriate 95% UCL.	
465	•		mulation studies summarized in Singh, Singh, and laci (2002)	
466			ons results will not cover all Real World data sets.	
467	For additional insigh	nt the user m	nay want to consult a statistician.	
468				
469	Makal			
	Nickel			
471		General	Statistics	
472	Total Number of Observations	14		8
473	Total Hambel of Observations			0
474	Minimum	2		7.093
475	Maximum	10		7
476	SD	2.014		0.538
477	Coefficient of Variation	0.284		0.97
478				
479 480		Normal (GOF Test	
481	Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test	
482	5% Shapiro Wilk Critical Value	0.874	Data appear Normal at 5% Significance Level	
483	Lilliefors Test Statistic	0.241	Lilliefors GOF Test	
484	5% Lilliefors Critical Value	0.237	Data Not Normal at 5% Significance Level	
485	Data appear Appr	oximate No	rmal at 5% Significance Level	
486				
400				

407	Α	В	С		D	E		F suming Nori	G nal Distribut	H ion	I	J	K	\Box	L
487			95%	Norma	al UCL			9			UCLs (Adi	usted for Sk	ewness)		
488						udent's-t	UCL	8.046				ted-CLT UCL	•	5)	7.829
489											•	fied-t UCL (Jo	`		8.023
490 491															
491								Gamma	GOF Test						
493					A-D	Test Sta	tistic	1.077		Ande	son-Darling	g Gamma Go	OF Test		
494				ļ	5% A-D	Critical \	/alue	0.735	D	ata Not Gam	ıma Distribu	ited at 5% Si	gnificance l	eve	i
495					K-S	Test Sta	tistic	0.299		Kolmo	grov-Smirno	off Gamma G	OF Test		
496				ļ	5% K-S	Critical \	/alue	0.229	D	ata Not Gam	ıma Distribu	ited at 5% Si	gnificance l	eve	ı
497					D	ata Not	Gamn	na Distribute	ed at 5% Sig	nificance Le	vel			-	
498															
499								Gamma	Statistics						
500						k hat (I	MLE)	9.048			k	star (bias co	rrected ML	E)	7.157
501					Th	eta hat (I	MLE)	0.784			Theta	star (bias co	rrected ML	E)	0.991
502						nu hat (I	MLE)	253.3				nu star (bi	as correcte	d)	200.4
503				MLE	Mean (b	ias corre	cted)	7.093				MLE Sd (bi		1	2.651
504												e Chi Square	,	´	168.6
505			Ad	djusted	Level o	f Signific	ance	0.0312			P	Adjusted Chi	Square Val	ar	164.8
506															
507									ma Distribut						
508		95% Approxi	imate Gam	nma UC	CL (use v	when n>:	=50))	8.428		95% Ac	ljusted Gam	nma UCL (us	e when n<5	0)	8.626
509															
510						-			GOF Test						
511			F0.			Test Sta		0.727				gnormal GO			
512			5%			Critical \		0.874				at 5% Signific		·	
513						Critical \		0.326				normal GOF at 5% Signific			
514				5% L	illetors				5% Signific		Lognormai	at 5% Signine	cance Leve		
515						Data	NOL L	ognomiai ai	. 5% Signinic	ance Level					
516								Lognorma	I Statistics						
517				Min	imum of	Logged	Data	0.693	- Ctationio			Mean o	f logged Da	ıta	1.903
518						Logged		2.303					f logged Da		0.394
519						- 33							- 33		
520 521							Assu	ming Logno	rmal Distrib	ution					
521 522						95% H-		8.997			90%	Chebyshev	(MVUE) U	CL	9.522
523			95	5% Che	byshev	(MVUE)	UCL	10.57			97.5%	Chebyshev	(MVUE) U	CL	12.03
524			99	9% Che	byshev	(MVUE)	UCL	14.89							
525							ļ								
526						Nonpa	arame	tric Distribu	tion Free UC	L Statistics					
527				Da	ta appe	ar to follo	ow a [Discernible	Distribution a	at 5% Signif	cance Leve	el			
528															
529						N	onpar	ametric Dis	tribution Fre	e UCLs					
530					9	5% CLT	UCL	7.978				95% J	ackknife U0	CL	8.046
531			9			Sootstrap		7.951					otstrap-t U0		7.946
532						Sootstrap		7.894			95%	Percentile B	ootstrap U0)L	7.893
533						Sootstrap		7.829							
534					•	ean, Sd)		8.708				hebyshev(M	•		9.44
535			97.5%	Cheby	shev(M	ean, Sd)	UCL	10.45			99% C	hebyshev(M	ean, Sd) U()L	12.45
536															
537					050/ -				UCL to Use						
538					95% St	udent's-t	UCL	8.046		Т	1		T	\perp	
539		Net C			41	male :- C	- 050′	LICL -:		n Alac · · ·			into 050() ;		
540		Note: Sugge	estions reg	jarding	tne sele	ection of a	a 95%	UCL are pr	ovided to hel	p tne user to	select the	most appropi	iate 95% U	UL.	

	A B C D E		G H I J K	
541			mulation studies summarized in Singh, Singh, and laci (2002)	
542	and Singh and Singh (2003). Howev	er, simulatio	ns results will not cover all Real World data sets.	
543	For additional insigh	nt the user m	ay want to consult a statistician.	
544				
545			(e.g., Chen, Johnson, Lognormal, and Gamma) may not be	
546	reliable. Chen's and Johnson's me	thods provi	de adjustments for positvely skewed data sets.	
547				
548				
549	Zinc			
550				
551			Statistics	
552	Total Number of Observations	14	Number of Distinct Observations	13
553			Number of Missing Observations	0
554	Minimum	14	Mean	91.36
555	Maximum	125	Median	96
556	SD	28.05	Std. Error of Mean	7.498
557	Coefficient of Variation	0.307	Skewness	-1.715
558		Name - 1 4	20F Tank	
559	Shapiro Wilk Test Statistic	0.845	Shapira Wilk COE Toot	
560	5% Shapiro Wilk Critical Value	0.845	Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level	
561	Lilliefors Test Statistic	0.874	Lilliefors GOF Test	
562	5% Lilliefors Critical Value	0.232	Data Not Normal at 5% Significance Level	
563			% Significance Level	
564	Data Not	- Normal at c	70 Oigninicance Level	
565	Δο	sumina Nori	nal Distribution	
566	95% Normal UCL	Julining 14011	95% UCLs (Adjusted for Skewness)	
567	95% Student's-t UCL	104.6	95% Adjusted-CLT UCL (Chen-1995)	100
568	3370 318831110 1 332		95% Modified-t UCL (Johnson-1978)	104.1
569				
570 571		Gamma	GOF Test	
572	A-D Test Statistic	1.638	Anderson-Darling Gamma GOF Test	
573	5% A-D Critical Value	0.738	Data Not Gamma Distributed at 5% Significance Leve	I
574	K-S Test Statistic	0.317	Kolmogrov-Smirnoff Gamma GOF Test	
575	5% K-S Critical Value	0.229	Data Not Gamma Distributed at 5% Significance Leve	I
576	Data Not Gamn	na Distribute	ed at 5% Significance Level	
577				
578		Gamma	Statistics	
579	k hat (MLE)	5.636	k star (bias corrected MLE)	4.476
580	Theta hat (MLE)	16.21	Theta star (bias corrected MLE)	20.41
581	nu hat (MLE)	157.8	nu star (bias corrected)	125.3
582	MLE Mean (bias corrected)	91.36	MLE Sd (bias corrected)	43.18
583			Approximate Chi Square Value (0.05)	100.5
584	Adjusted Level of Significance	0.0312	Adjusted Chi Square Value	97.52
585				
586			ma Distribution	
587	95% Approximate Gamma UCL (use when n>=50))	114	95% Adjusted Gamma UCL (use when n<50)	117.4
588		1	10057	
589	O		GOF Test	
590	Shapiro Wilk Test Statistic	0.606	Shapiro Wilk Lognormal GOF Test	
591	5% Shapiro Wilk Critical Value	0.874	Data Not Lognormal at 5% Significance Level	
592	Lilliefors Test Statistic	0.333	Lilliefors Lognormal GOF Test	
593	5% Lilliefors Critical Value	0.237	Data Not Lognormal at 5% Significance Level	
594	Data Not L	ognormal at	5% Significance Level	

	Α	В	С	D	Е	F	G	Н	I	J	K	L
595												
596						Lognorma	l Statistics					
597					ogged Data	2.639					logged Data	4.423
598			N	Maximum of I	ogged Data	4.828				SD of	logged Data	0.548
599												
600						uming Logno	ormal Distribu	ution				
601					95% H-UCL	133					(MVUE) UCL	139.2
602				Chebyshev (•	158.9			97.5%	Chebyshev	(MVUE) UCL	186.2
603			99%	Chebyshev (MVUE) UCL	239.9						
604												
605					Nonparame	etric Distribu	tion Free UC	L Statistics				
606				I	Data do not f	ollow a Disc	ernible Distri	ibution (0.05	5)			
607												
608					•	rametric Dis	tribution Free	UCLs				
609				95	% CLT UCL	103.7				95% Ja	ackknife UCL	104.6
610			95%	Standard Bo	otstrap UCL	103.5					otstrap-t UCL	102.4
611				5% Hall's Bo		101			95%	Percentile Bo	ootstrap UCL	102.2
612				95% BCA Bo	•	100.8						
613			90% Ch	ebyshev(Me	an, Sd) UCL	113.9			95% Ch	nebyshev(Me	ean, Sd) UCL	124
614			97.5% Ch	ebyshev(Me	an, Sd) UCL	138.2			99% Ch	nebyshev(Me	ean, Sd) UCL	166
615												
616						Suggested	UCL to Use					
617			95% Che	ebyshev (Me	an, Sd) UCL	124						
618												
619	١	lote: Sugge:	stions regard	ing the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the m	nost appropri	iate 95% UCL	
620		These rec	ommendatior	ns are based	upon the res	ults of the si	mulation stud	dies summar	rized in Singl	h, Singh, and	d laci (2002)	
621			and Singh	and Singh (2	2003). Howe	er, simulatio	ns results wi	Il not cover a	all Real Worl	d data sets.		
622				For ad	ditional insig	ht the user m	nay want to co	onsult a stat	istician.			
623												
624		Note: For	highly negat	ively-skewe	d data, confi	dence limits	(e.g., Chen,	Johnson, Lo	ognormal, ar	nd Gamma)	may not be	
625			reliable.	Chen's and	lohnson's me	ethods provi	de adjustme	nts for posit	vely skewed	l data sets.		
626												

APPENDIX J ADDITIONAL SEDIMENT TESTING- PROPOSED CONSTRUCTION PLATFORM-NORTHERN INTERCEPTOR PROJECT

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand Tel +64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

ANALYSIS REPORT

Page 1 of 3

SPv1

Client:

Jacobs New Zealand Limited

Contact: W Starke

C/- Jacobs New Zealand Limited

PO Box 9806 Newmarket AUCKLAND 1149

 Lab No:
 1355272

 Date Registered:
 25-Nov-2014

 Date Reported:
 09-Dec-2014

Quote No: 65091

Order No:

Client Reference: AE04521 Submitted By: C Sjardin

Sample Type: Sedimer	nt					
	Sample Name:			Tab 3 0-0.2 21-Nov-2014 3:05	Tab 1 0-0.2 [<63um Fraction]	Tab 2 0-0.2 [<63um Fraction]
	1 -1 11 -1 -1	pm	pm	pm	4055070.4	1355272.5
Individual Tests	Lab Number:	1355272.1	1355272.2	1355272.3	1355272.4	1355272.5
	(400 1		07	00		
Dry Matter	g/100g as rcvd	60	67	62	-	-
Extractable Copper*	mg/kg dry wt	-	-	-	21	22
Extractable Lead*	mg/kg dry wt	-	-	-	30	30
Extractable Zinc*	mg/kg dry wt	-	-	-	124	121
Total Organic Carbon*	g/100g dry wt	0.94	0.84	0.87	-	-
Heavy metals, trace As,Cd,C	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	35	30	17.6	-	-
Total Recoverable Cadmium	mg/kg dry wt	0.040	0.046	0.039	-	-
Total Recoverable Chromium	mg/kg dry wt	15.1	12.1	14.1	-	-
Total Recoverable Copper	mg/kg dry wt	12.2	10.2	11.0	-	-
Total Recoverable Lead	mg/kg dry wt	24	25	18.7	-	-
Total Recoverable Mercury	mg/kg dry wt	0.093	0.103	0.095	-	-
Total Recoverable Nickel	mg/kg dry wt	6.6	6.5	6.6	-	-
Total Recoverable Zinc	mg/kg dry wt	89	91	78	-	-
Organochlorine Pesticides T	race in Soil					
Aldrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
alpha-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
beta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
delta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
cis-Chlordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
trans-Chlordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
2,4'-DDD	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
4,4'-DDD	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
2,4'-DDE	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
4,4'-DDE	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
2,4'-DDT	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
4,4'-DDT	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
Dieldrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
Endosulfan I	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
Endosulfan II	mg/kg dry wt		< 0.0010	< 0.0010	-	-
Endosulfan sulphate	mg/kg dry wt		< 0.0010	< 0.0010	-	-
Endrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
Endrin aldehyde	mg/kg dry wt		< 0.0010	< 0.0010	-	-
Endrin ketone	mg/kg dry wt		< 0.0010	< 0.0010	-	-
Heptachlor	mg/kg dry wt		< 0.0010	< 0.0010	-	-
Heptachlor epoxide	mg/kg dry wt		< 0.0010	< 0.0010	-	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which laboratory are not accredited.

Sample Type: Sediment						
	Sample Name:	Tab 1 0-0.2 21-Nov-2014 2:30 pm	Tab 2 0-0.2 21-Nov-2014 2:15 pm	Tab 3 0-0.2 21-Nov-2014 3:05 pm	Tab 1 0-0.2 [<63um Fraction]	Tab 2 0-0.2 [<63um Fraction]
	Lab Number:	1355272.1	1355272.2	1355272.3	1355272.4	1355272.5
Organochlorine Pesticides Tra	ace in Soil					
Hexachlorobenzene	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
Methoxychlor	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.002	< 0.002	< 0.002	-	-
Polycyclic Aromatic Hydrocarb	ons Trace in Soil					
Acenaphthene	mg/kg dry wt	0.017	0.003	0.008	-	-
Acenaphthylene	mg/kg dry wt	0.008	0.003	0.005	-	-
Anthracene	mg/kg dry wt	0.039	0.007	0.015	-	-
Benzo[a]anthracene	mg/kg dry wt	0.121	0.025	0.062	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.147	0.032	0.078	-	-
Benzo[b]fluoranthene + Benzo fluoranthene	[j] mg/kg dry wt	0.169	0.040	0.091	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	0.093	0.024	0.052	-	-
Benzo[k]fluoranthene	mg/kg dry wt	0.064	0.015	0.035	-	-
Chrysene	mg/kg dry wt	0.123	0.027	0.065	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	0.018	0.005	0.010	-	-
Fluoranthene	mg/kg dry wt	0.34	0.064	0.168	-	-
Fluorene	mg/kg dry wt	0.015	0.003	0.007	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.093	0.022	0.051	-	-
Naphthalene	mg/kg dry wt	< 0.012	< 0.011	< 0.011	-	-
Phenanthrene	mg/kg dry wt	0.25	0.042	0.095	-	-
Pyrene	mg/kg dry wt	0.30	0.059	0.152	-	-
Tributyl Tin Trace in Soil samp	oles by GCMS					
Dibutyltin (as Sn)	mg/kg dry wt	< 0.005	-	-	-	-
Monobutyltin (as Sn)	mg/kg dry wt	< 0.007	-	-	-	-
Tributyltin (as Sn)	mg/kg dry wt	< 0.004	-	-	-	-
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	-	-	-	-
Total Petroleum Hydrocarbons	s in Soil					
C7 - C9	mg/kg dry wt	< 12	< 11	< 11	-	-
C10 - C14	mg/kg dry wt	< 30	< 30	< 30	-	-
C15 - C36	mg/kg dry wt	< 50	< 50	< 50	-	-
Total hydrocarbons (C7 - C36)) mg/kg dry wt	< 80	< 80	< 80	-	-

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment				
Test	Method Description	Default Detection Limit	Sample No	
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-3	
Heavy metals, trace As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, trace level.	0.010 - 0.4 mg/kg dry wt	1-3	
Organochlorine Pesticides Trace in Soil	Sonication extraction, SPE cleanup, GPC cleanup (if required), dual column GC-ECD analysis. Tested on dried sample	0.0010 - 0.002 mg/kg dry wt	1-3	
Polycyclic Aromatic Hydrocarbons Trace in Soil	Sonication extraction, SPE cleanup, GC-MS SIM analysis US EPA 8270C. Tested on as received sample [KBIs:5784,4273,2695]	0.002 - 0.010 mg/kg dry wt	1-3	
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	1	
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	1-3	
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry) , gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1-3	

Sample Type: Sediment				
Test	Method Description	Default Detection Limit	Sample No	
ARC 2M HCI Extraction*	<63µm Sieved Fraction, extracted with 2M HCI. Solid:Liquid 1:50 w/v. ARC Tech Publication No. 47, 1994.	-	4-5	
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-3	
Sieving through 63 um sieve, no gravimetric result*	<63µm Wet Sieved with no gravimetric determination.	-	1-2	
Extractable Copper*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	1.0 mg/kg dry wt	4-5	
Extractable Lead*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	0.2 mg/kg dry wt	4-5	
Extractable Zinc*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	2 mg/kg dry wt	4-5	
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	1-3	

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech)

Client Services Manager - Environmental Division

10

R J Hill Laboratories Limited Phone: +64 7 858 2000 1 Clyde Street, Fax: +64 7 858 2001 Private Bag 3205 Email: mail@hill-labs.co.nz Web: www.hill-laboratories.com Client Hamilton, New Zealand Jacobs New Zealand Limited Name 31906 Office use Job No: Address PO Box 9806, Newmarket **AUCKLAND 1149** 09 928 5500 Fax 09 928 5501 Phone Sent to Hill Laboratories Client Reference Name: Please tick if you Quote No 65091 Order No require COC to be emailed back Signature: **Primary Contact** W Starke 13741 Received at Date & Time: **Submitted By** W Starke 13741 **Hill Laboratories** Name: Jacobs New Zealand Limited Charge To 31906 Signature: Results To Mail Primary Contact Mail Submitter Condition Temp: Fax Results Room Temp | Chilled | Frozen Email Results Walter. Starke @ jacobs.com Sample & Analysis details checked Signature: Priority Low Normal csjardin@tonkin.co.nz Urgent (ASAP, extra charge applies, please contact lab first) NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 10 working days following the day of receipt of the samples at the laboratory. **Quoted Sample Types** Requested Reporting Date: Sediment (Sed) No. Sample Name Sample Date/Time Sample Type Tests Required 21/11/14 2:32 sedinat Please test as per Quote 21/11/14 2:15pm sediment # 65091, there is no 21/11/14 3:05pm sediment PSOIL container for Site 1 2 3 4 5 6 7 8 9