Greenhithe Bridge Watermain Duplication and Causeway

Technical Report B – Soil, Sediment and Groundwater Contamination

03 June 2015

Revision	Status	Date	Description/Change to Report	Author(s)	Task Manager Check	Project Manager Approval
		v			Signatures	
			<u></u>			
1	_ Draft	04/12/2014	Issued to URS, by Jacobs, for review	Walter Starke – Jacobs	Alan Hockey- Jacobs	
2	Draft	16/12/2014	Issued to URS, by Jacobs, for review	Walter Starke – Jacobs	Alan Hockey- Jacobs	
3	Final-draft	11/03/2014	Issued to URS, by Jacobs, incorporating Watercare comments, for review	Walter Starke – Jacobs Comm	Alan Hockey- Jacobs	а с с . А
4	Final-draft	17/03/2014	Issued to URS, by Jacobs, incorporating URS' comments, for review	Walter Starke – Jacobs 600000	Alan Hockey- Jacobs	7
5	Final	6/05/2015	Issued to Watercare, by Jacobs, incorporating Watercare comments for review	Walter Starke – Jacobs	Alan Hockey- Jacobs	с -
6	Final	03/06/2015	Issued to Watercare, by Jacobs, incorporating Watercare final comments as per AECOM email dated 22/05/15	Walter Starke – Jacobs	Alan Hockey- Jacobs	

Note: Since 17 October 2014 URS is fully owned by AECOM

Document Delivery

Jacobs New Zealand Limited (Jacobs) provides this document in either printed format, electronic format or both. Jacobs considers the printed version to be binding. The electronic format is provided for the client's convenience and Jacobs requests that the client ensures the integrity of this electronic information is maintained. Storage of this electronic information should at a minimum comply with the requirements of the *Electronic Transactions Act 2002*.

TABLE OF CONTENTS

Ex			nmary	
1			tion	
2			the Bridge Watermain Duplication and Causeway Proposed Works	
3	Pur		, objectives and scope of work	
	3.1		pose	
	3.2	,	ectives	
	3.3		pe of Work	
	3.4		er Relevant Reports	
4	Stat		y Requirements: Contaminated land Assessment Criteria	
	4.1		ional and Auckland Criteria	
	4.2		Soil	
	4.3		V Plan	
	4.3	_	Rule 5.5.41- Soil and Sediment	
	4.3		Rule 5.5.47- Groundwater	
	4.4		JP	
	4.4		Provision H.4.5.2.1.3	
	4.4		Provision H.4.18.2.1.1.2	
	4.5		pted Site Assessment Criteria	
	4.5	_	Soil and Sediment: Adopted Site Assessment Criteria	
		.2	Groundwater: Adopted Site Assessment Criteria	
5			al aerial photograph review	
	5.1		f History of Hobsonville Airbase	
6			site contamination enquiry	
7			I for contamination	
8			stigation works	
	8.1		ective	
	8.2		ppling Methodology: Soil, Sediment and Groundwater	
	8.3		dwork	
	8.4		litional Fieldwork	
9			bry Testing	
10			Disposal of Soil and Sediment	
11			ent of site test results	
	11.1		Contamination Assessment	
			iment Contamination Assessment	
	11.3		undwater Contamination Assessment	
12			ent of Environmental Effects	
	12.1		ceptual Model Development	
	12.2		rces	
	12.3		nways	
	12.4		eptors	
	12.5		clusion: Assessment of Human Health and Environmental Effects	
13			ons	
	13.1		clusions	
	13.		Statutory Assessment	
	13.		Sediment Contamination Assessment	
	13.		Soil Contamination Assessment	
	13.		Groundwater	
<u> </u>	13.		Assessment of Effects: Potential Soil, Sediment and Groundwater Contamination	
14			ons	
15			ces	
16	Abb	previa	ations	37

APPENDICES

Appendix A HISTORICAL AERIAL PHOTOGRAPH REVIEW

Appendix B HAZARDOUS ACTIVITIES AND INDUSTRIES LIST

Appendix C COUNCIL SITE CONTAMINATION ENQUIRY

Appendix D SAMPLING METHODOLOGY: SOIL, SEDIMENT & GROUNDWATER

Appendix E ENVIRONMENTAL SAMPLING AND TESTING REPORT (OPUS, 2014A)

Appendix F BOREHOLE LOGS: GEOTECHNICAL FACTUAL REPORT (OPUS, 2014B)

Appendix G SOIL CONTAMINATION ASSESSMENT

Appendix H SEDIMENT CONTAMINATION ASSESSMENT

Appendix I UPPER CONFIDENCE LIMIT- HEAVY METALS

Appendix J ADDITIONAL SEDIMENT TESTING- PROPOSED CONSTRUCTION PLATFORM-NORTHERN INTERCEPTOR PROJECT

EXECUTIVE SUMMARY

This technical report presents the findings of the potential soil, sediment and groundwater contamination effects related to the construction, operation and maintenance of Watercare's proposed Greenhithe Bridge Watermain Duplication and Causeway project (Project). It supports the *Greenhithe Bridge Watermain Duplication and Causeway – Assessment of Effects on the Environment* report ("the AEE") prepared by AECOM Consulting Service (NZ) Ltd (AECOM) and Jacobs New Zealand Ltd (Jacobs).

This report provides the following:

- a) A brief overview of the proposed works.
- b) Outline of the statutory framework relevant to soil, sediment and groundwater contamination.
- c) The purpose, objectives and scope of work for the soil, sediment and groundwater contamination assessment in relation to the Project.
- d) A desk top study to assess if current or historical activities at the Project site have or had the potential to cause ground contamination.
- e) Fieldwork and laboratory testing of the soil, sediment and groundwater to provide an environmental baseline for the site.
- f) An assessment of the actual or potential effects on the environment (construction, operation and maintenance), having reference to the statutory framework and any other environmental factors considered relevant.
- g) Recommended mitigation and management measures.

Conclusions

No activity or industry listed on the Hazardous Activities Industries List (HAIL) was identified within the Project site. It is therefore considered that the requirements of the Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011 (NES Soil) do not apply to the Project site.

The Project site's soil, sediment and groundwater contaminant levels have been assessed against the requirements of the contaminated land rules of the Auckland Council Regional Plan: Air, Land and Water (ALW Plan) and the Proposed Auckland Unitary Plan (PAUP).

Sediment Contamination Assessment

- a) A Detailed Site Investigation (DSI) shows that the sediment contaminant levels are:
 - i. Below the laboratory level of detection for organic parameters except for minor amounts of Polycyclic Aromatic Hydrocarbons.
 - ii. Below the Auckland background concentrations for inorganic soils except for Arsenic.
 - iii. Below the soil contaminant criteria specified in Rule 5.5.41 of the ALW Plan and below the soil contaminant criteria specified in provision H.4.5.2.1.3 of the PAUP.

- b) Off-site sediment disposal may be at a licensed managed fill site or licensed solid waste landfill, i.e. not to a licensed cleanfill site. On-site disposal of the sediment or reuse of the sediment in, for example, mudcrete is permitted, from a contamination perspective.
- c) The sediment contamination levels are below the Interim Sediment Quality Guidelines- Low Trigger Values (ANZECC, 2000), when using the 95% Upper Confidence Limit of the test results.
- Technical Report D contained in Volume 2 of the AEE provides an ecological assessment for the Project.

Soil Contamination Assessment

- e) No resource consent is required under the ALW Plan since the requirements of Rule 5.5.41 are met, i.e. the soil contaminant levels are below the Schedule 10 contaminant criteria and other criteria referenced in Rule 5.5.41.
- f) No resource consent is required under the PAUP since the requirements of provision H.4.5.2.1.1 are met.
- g) The soil contaminant levels meet the Auckland background soil quality for non-volcanic soils and therefore spoil can be removed off-site to a licensed cleanfill site, if required. Equally the spoil can be reused on-site

Groundwater

- h) No resource consent is required under the ALW Plan since the requirements of Rules 5.5.41(e) and 5.5.58(c) are met, i.e. the discharge of groundwater contaminant levels, after reasonable mixing, are below the ANZECC (2000) Freshwater criteria for 95% level of protection of species.
- i) No resource consent is required under the PAUP since the requirements of provision H.4.18.2.1.1.2 are met.
- j) If temporary groundwater disposal is required during construction of the proposed valve chambers and other excavations it may be disposed of as stormwater.

Assessment of Effects: Potential Soil, Sediment and Groundwater Contamination

- k) It is considered that the potential soil, sediment and groundwater contamination effects related to the construction, operation and maintenance of the Project are less than minor.
- I) It is considered that potential adverse effects on the environment arising from unforeseen/unknown ground contamination at the Project site can be avoided, mitigated and remedied by ensuring that the contractor adheres to the protocols listed in a Project Construction Management Plan (CMP). The CMP will be prepared once the contractor has been appointed and the CMP will be submitted to Council prior to construction as discussed in Section 2.3.4 of the AEE.

1 INTRODUCTION

Jacobs New Zealand Ltd (Jacobs) has been commissioned by Watercare Services Limited (Watercare) to assess the potential soil, sediment and groundwater contamination effects related to the construction, operation and maintenance of Watercare's proposed Greenhithe Bridge Watermain Duplication and Causeway project (Project).

The Project comprises:

- a) The construction of a new watermain on the northern side of the Greenhithe Bridge to duplicate the existing North Harbour 1 Watermain already located on the southern side of the bridge, and.
- b) Widening along the northern side of the existing State Highway 18 motorway causeway to accommodate the new watermain, as well as wastewater pipelines and associated facilities which form part of Watercare's proposed Northern Interceptor project.

The proposed water and wastewater infrastructure is required in order to maintain water and wastewater service levels and to provide for future growth.

The proposed Greenhithe Bridge Watermain Duplication and Causeway project requires various resource consents under the Resource Management Act 1991 ("RMA"). This technical report provides specialist input for the *Greenhithe Bridge Watermain Duplication and Causeway – Assessment of Effects on the Environment* report (AEE) report prepared by AECOM and Jacobs which supports the resource consent application. The works described in the AEE have been considered in the technical assessment presented in this report.

This report provides the following:

- a) A brief overview of the proposed works (Section 2).
- b) The purpose, objectives and scope of work for the soil, sediment and groundwater contamination assessment in relation to the Project (Section 3).
- c) Outline of the statutory framework relevant to soil, sediment and groundwater contamination (Section 4).
- d) A desk top study to assess if current or historical activities at the Project site have or had the potential to cause ground contamination (Sections 5-7)
- e) Fieldwork and laboratory testing of the soil, sediment and groundwater to provide an environmental baseline for the site (Sections 8-10).
- f) An assessment of the actual or potential effects on the environment (construction, operation and maintenance), having reference to the statutory framework and any other environmental factors considered relevant (Sections 11 and 12).
- g) Recommended mitigation and management measures (Section 13).

The new watermain will eventually form part of Watercare's future North Harbour 2 (NH2) Watermain project. The proposed widening of the motorway causeway will also incorporate wastewater pipelines and associated facilities which form part of Watercare's proposed Northern Interceptor (NI) project.

Separate technical reports have or will be prepared for the future NH2 Watermain project and for the balance of the NI project.

2 GREENHITHE BRIDGE WATERMAIN DUPLICATION AND CAUSEWAY PROPOSED WORKS

The proposed Greenhithe Bridge Watermain Duplication and Causeway works assessed in this report are the construction, operation and maintenance of:

- a) The proposed watermain from Station Street in Hobsonville, under the motorway to the coastal edge – this will involve open trenching from Station Street to the motorway, and trenchless construction under the motorway;
- b) Proposed causeway widening to accommodate the proposed watermain and wastewater pipelines – the proposed widening is approximately 860 metres in length and 15-50 metres in width along the northern side of the existing motorway causeway;
- c) The proposed watermain attached to the underside of the Greenhithe Bridge; and
- d) A proposed watermain cross connection chamber close to the eastern abutment of the Greenhithe Bridge.

The proposed works are described in detail in the AEE. The works described in section 2.3.4 of the AEE and shown on the drawings are provided in Volume 3 of the AEE.

3 PURPOSE, OBJECTIVES AND SCOPE OF WORK

3.1 Purpose

The purpose of this report is to assess the potential effects on soil, sediment and groundwater contamination and how it may potentially affect the construction, operation and maintenance of the Project. It is one of a series of technical reports which supports the AEE for the Project.

3.2 Objectives

The objectives of the report are to:

- a) Identify relevant regulatory considerations;
- b) Assess the potential effects that construction, operation, maintenance or decommissioning of the Project may have on soil, sediment and groundwater contamination; and
- c) Identify appropriate control measures to minimise potential risks associated with soil, sediment and groundwater contamination on construction, operation, maintenance or decommissioning of the Project.

3.3 Scope of Work

In order to achieve the objectives a statutory assessment was undertaken followed by a soil, sediment and groundwater contamination assessment. The latter was carried out in two phases.

The first phase involved a desk top study to assess if current or historical activities at the site have or had the potential to cause ground contamination. The second phase comprised subsurface investigations to establish the soil, sediment and groundwater quality at the site.

The Phase 1 scope of work comprised:

- a) Historical aerial photograph review.
- b) Site contamination enquiry with Auckland Council (Council).

The Phase 2 scope of work consisted of:

- a) Soil sampling near the locations of the proposed excavations for:
 - i. New Watermain to NH1 pipe connection- west end: the jacking and receiving pits located north and south of SH18.
 - ii. Watermain to NH1 pipe connection- east end: the pit to form the valve chamber.
- b) Sediment sampling of the existing sediments located within the footprint of the proposed causeway widening and NI 'tab' area.
- c) Groundwater sampling at one of the proposed valve chamber excavation sites located west of Greenhithe Bridge
- d) Laboratory testing of soil, sediment and groundwater samples for a range of organic and inorganic parameters.

- e) Assessing the soil, groundwater and sediment test results against relevant regulatory and offsite disposal requirements.
- f) Preparing this soil, sediment and groundwater contamination report.

3.4 Other Relevant Reports

This report should be read in conjunction with the following reports:

- a) AEE- Greenhithe Bridge Watermain Duplication and Causeway, Volume 1.
- b) AEE- Greenhithe Bridge Watermain Duplication and Causeway, Volume 3 Drawings
- c) Technical Report C Groundwater, Greenhithe Bridge Watermain Duplication and Causeway, Volume 2.
- d) Technical Report D Ecology, Greenhithe Bridge Watermain Duplication and Causeway, Volume 2.

4 STATUTORY REQUIREMENTS: CONTAMINATED LAND ASSESSMENT CRITERIA

This section discusses the national and Auckland assessment criteria, in terms of soil, sediment and groundwater.

4.1 National and Auckland Criteria

The contaminated land assessment criteria in the Auckland region are covered by:

- a) The Resource Management (National Environmental Standard for Assessing and Managing Contaminants in Soil to Protect Human Health) Regulations 2011, commonly referred to as the NES Soil.
- b) The Auckland Council Regional Plan: Air, Land & Water (ALW Plan).
- c) The Proposed Auckland Unitary Plan (PAUP)

The PAUP was notified on 30 September 2013. The PAUP is currently going through the public notification and submissions process. The existing district and regional plans remain operative until superseded by the provisions of the PAUP as they are made operative.

However, section 86B(3) of the RMA states that a rule in a proposed plan has immediate legal effect from the date of notification if the rule:

- a) protects or relates to water, air, or soil (for soil conservation); or
- b) protects areas of significant indigenous vegetation; or
- c) protects areas of significant habitats of indigenous fauna; or
- d) protects historic heritage; or
- e) provides for or relates to aquaculture activities.

A number of rules in the PAUP have immediate legal effect as at 30 September 2013, and thus must be considered in relation to the proposed works, along with the operative plans. The contaminated soil, groundwater and landfill rules under the PAUP are very similar to those in the ALW Plan, and the permitted activity (PA) soil acceptance criteria in provision H.4.5.2.1.3 are the same as the Schedule 10 levels in the ALW Plan. PAUP rule H.4.5.2.3.1 is further discussed in Section 4.4.

4.2 NES Soil

On 1st January 2012 the NES Soil came into effect. All territorial authorities (district and city councils) are required to give effect to and enforce the requirements of the NES.

Section 4 of the NES sets out the relationship of the regulations with territorial and regional council functions. The NES Soil relates to territorial authority functions (as set out in section 31 of the RMA), but does not apply to regional council functions under section 30 of the RMA. Accordingly, the NES Soil does not relate to the Coastal Marine Area, which falls within regional council jurisdiction.

The policy objective of the NES Soil is to ensure land affected by contaminants in soils is appropriately identified and assessed when soil disturbance and/or land development activities take place and, if necessary, remediated or the contaminant contained to make the land safe for human use.

The NES Soil achieves its policy objective through a mix of allowing (permitting) and controlling (through resource consents) certain activities on land affected or potentially affected by soil contaminants. Under the regulations, land is considered to be actually or potentially contaminated if an activity or industry on the HAIL has been, is, or is more likely than not to have been, undertaken on that land.

The NES Soil provides selected soil guideline values (SGVs) for human health protection for a range of land uses and these SGVs are derived from the NES Soil soil contamination standards (SCSs) for twelve priority contaminants or other referenced guidelines for non-priority contaminants. Nine of the twelve priority contaminants have been assessed as part of this study, the remaining three contaminants, Boron, Pentachlorophenol and Dioxin, were not considered a contaminant of potential concern. The soil laboratory test results have been assessed against the appropriate SGVs in Section 11.

This contaminated land assessment report is considered to meet the requirements of a Detailed Site Investigation (DSI) and demonstrates that the priority contaminants were found to be below the background concentrations.

If a DSI exists and the soil contaminant levels are below background concentrations then the NES does not apply, as covered by NES Regulation 5(9).

4.3 ALW Plan

The ALW Plan contains a number of contaminated land rules, Rules 5.5.40 to 5.5.45, that specify whether earthworks or soil disturbing activities are a Permitted Activity, Controlled Activity, Restricted Discretionary Activity or a Discretionary Activity.

There are two Permitted Activity Rules relevant to the project, Rule 5.5.41 (for soil) and Rule 5.5.57 (for temporary discharge of uncontaminated groundwater).

The are two other Permitted Activity rules related to soil contamination, Rule 5.4.40 is a Permitted Activity rule for trenching, small scale disturbance and intrusive investigations and the criteria require a relatively low soil disturbance volume ($<200 \text{ m}^3$) and limited duration of excavation work (< 1 month). These criteria will be exceeded by the proposed works and have therefore not been considered further. Rule 5.5.42 is relevant for petroleum underground storage tanks and therefore not relevant to the project.

4.3.1 Rule 5.5.41- Soil and Sediment

Rule 5.5.41 allows for soil contaminant levels to be less than 95% of the Upper Confidence Limit (UCL), as described in the Ministry for the Environment (MfE) document *Contaminated Land Management Guidelines No. 5- Site Investigation and Analysis of Soils* (MfE, 2004) using the greater of (i) or (ii) below:

- i. For in situ soil and material imported and/or deposited onto the land:
 - 1. The criteria specified in Schedule 10 of the ALW Plan. Note, the discharge values have been applied in this report and it is understood that the human health values in Schedule

10 are superseded by the SGVs in the NES. For contaminants not included in Schedule 10;

- 2. The Tier 1 soil acceptance criteria for the current land use or, in the case of a proposed change in land use, the proposed land use for the more stringent of either the protection of human health or sensitive groundwater specified in the MfE document *Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand* (MfE, 1999), of for contaminants not included in Schedule 10 or the Petroleum Hydrocarbon guidelines;
- 3. The soil quality guidelines for the current land use or , in the case of a proposed change in land use, the proposed land use in *the Canadian Environmental Quality Guidelines*, prepared by the Canadian Council of Ministers of the Environment (CCME, 1991), updated 2002, for the currently zoned land use, or for contaminants not included in Schedule 10, the Petroleum Hydrocarbon guidelines or the CCME guidelines;
- 4. For dieldrin and lindane only, the soil quality guidelines in the MfE document *Identifying, Investigating and Managing Risks Associated with Former Sheep-Dip Sites- A Guide for Local Authorities* (MfE, 2006).
- ii. For in situ soil and material imported and/or deposited onto the land the natural background levels for that soil or material or the relevant background levels specified in the Auckland Regional Council (ARC) Technical Publication (TP) *Background concentrations of inorganic elements in soils from the Auckland region* (TP153) (ARC, 2001).

Rule 5.5.41 also requires that soil or material historically imported shall not contain separate phase liquid contaminants including separate phase hydrocarbons.

It is inferred that where sediment is excavated and disposed off-site onto land it becomes a soil and hence Rule 5.5.41 applies to sediment (for off-site disposal purposes).

4.3.2 Rule 5.5.47- Groundwater

In terms of assessing the contaminants in the groundwater for the project it is considered that Rule 5.5.57 applies:

"The discharge of water from the following is a Permitted Activity:

e) Temporary and permanent discharge of diverted uncontaminated groundwater;"

Uncontaminated groundwater, in terms of its contaminant level is defined in Rule 5.5.58 which states that:

"The activities in Rule 5.5.47 are subject to the following conditions:

c) "The contaminants discharged shall not either by itself or in combination with other contaminants after reasonable mixing exceed the greater of the 95 percent trigger values for freshwater (groundwater) specified in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000), or the natural background level, with the exception ..."

It is understood that with respect to the term 'reasonable mixing' Auckland Council can accept up to ten times (10x) the threshold criteria, i.e. the ANZECC 95% protection trigger level multiplied by ten.

The ecological report, contained in Appendix D, Volume 2 will address the ecological aspects of the sediment quality at the site.

For completeness the sediment laboratory test results have been assessed against the Interim Sediment Quality Guidelines (ISQG)- Low trigger values and ISQG- High trigger values in Section 11 of this report.

4.4 **PAUP**

4.4.1 Provision H.4.5.2.1.3

In the contaminated land section of the PAUP, provision H.4.5, an activity table is provided for discharge rules under Section 15 of the RMA. The table *"specifies the activity status for the discharge of contaminants to land and/or water from containing elevated levels of contaminants."*

Within the PAUP table it is considered that the activity described as *"Discharges of contaminants from land not used for primary production"* is most relevant to the Project works, and the PAUP table classifies this as a Permitted Activity.

Auckland Council manages the potential discharges from a Permitted Activity with a number of controls and the controls applicable to the *"Discharges of contaminants from land not used for primary production"* are specified in provision H.4.5.2.1.3 of the PAUP and are paraphrased below:

- "For in-situ soil and material imported or deposited onto land, the concentrations of target contaminants, or 95 per cent upper confidence limit of the mean, determined in accordance with 'Contaminated Land Management Guidelines- No. 5- Site Investigation and Analysis of Soils', Ministry for the Environment (2011), must not exceed the greater of a. or b. below:
 - a) For in-situ soil and material imported and/or deposited onto the land
 - *i. the criteria specified in Table 1; or for contaminants not listed in Table 1:*
 - *ii.* the tier 1 soil acceptance criteria for the protection of groundwater quality specified in Table 4.20 of the 'Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand', Ministry for the Environment (October 2011); or for contaminants not included in Table 1 or Table 4.20:
 - *iii.* the soil quality guidelines for the current land use or, in the case of a proposed change in land use, the proposed land use in the 'Canadian Environmental Quality Guidelines', Canadian Council of Ministers of the Environment (2013):
 - iv. for dieldrin and lindane only, the soil guideline values in Table A.5 of the report 'Identifying, Investigating and Managing Risks Associated with Former Sheep Dip Sites: A Guide for Local Authorities', Ministry for the Environment (2006).
 - b) The natural background levels for that soil or material or the relevant background levels specified in Table 2.
- 2. The land and the discharge must not contain separate phase liquid contaminants including separate phase hydrocarbons.

Table 1: Permitted activity soil acceptance criteria

Contaminant	Permitted activity criteria (mg/kg)
Arsenic	100.0
Benzo (a) pyrene	2.15
(equivalent)	
Cadmium	7.5
Chromium (total)	400.0
Copper	325.0
Total DDT	12.0
Lead	250.0
Mercury	0.75
Nickel	105.0
Zinc	400.0

Total DDT includes the sum of DDT, DDD and DDE.

Table 2: Background ranges of trace elements in Auckland soils (Auckland Council TP153,	
2001)	

Element (total recoverable)	Non-volcanic range	Volcanic range	
Arsenic (As)	0.4 -	- 12	
Boron (B)	2 – 45	<2 - 260	
Cadmium (Cd)	<0.1 - 0.65		
Chromium (Cr)	2 – 55	3 – 125*	
Copper (Cu)	1 – 45	20 – 90	
Lead (Pb)	<5 - 65*		
Mercury (Hg)	<0.03-	- 0.45	
Nickel (Ni)	0.9 – 35	4 – 320	
Zinc (Zn)	9– 180	54 – 1160	

Therefore the controls of provision H.4.5.2.1.3 of the PAUP are, in terms of maximum allowable soil contaminant criteria, the same as those specified in Rule 5.5.41 of the ALW Plan (see Section 4.3.1).

4.4.2 Provision H.4.18.2.1.1.2

Provision H.4.18 of the PAUP allows for "...discharges of contaminants onto or into land that are not otherwise covered by the plan, and that are identified as occurring or needing to occur for recognised purposes."

An activity table is provided for provision H.4.18 and the activity described as *"discharge of water from ... temporary and permanent discharge of diverted uncontaminated groundwater.."* has a Permitted Activity status.

The controls relevant to contaminant criteria relevant to a permitted activity are specified in provision H.4.18.2.1.1.2 of the PAUP and are paraphrased below:

"The contaminant discharged must not either by itself or in combination with other contaminants after reasonable mixing exceed the greater of the 95 percent trigger values for freshwater (groundwater) specified in the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (2000), or the natural background level".

Therefore the controls of provision H.4.18.2.1.1.2 of the PAUP are the same as those specified in Rule 5.5.58(c) of the ALW Plan (see Section 4.3.2).

4.5 Adopted Site Assessment Criteria

4.5.1 Soil and Sediment: Site Assessment Criteria

Based on the NES Soil, ALW Plan and PAUP soil guideline values described above, the appropriate soil and sediment contamination values used to assess the site are presented in Table 1 below. The ANZECC ISQG-Low and ISQG-High concentrations have been presented for comparative purposes only.

Parameter (mg/kg dry weight)	ALW Plan Permitted Activity Limits ²		SGVs Commercial/industrial outdoor	TP 153 ⁸ (cleanfill criteria)		ANZECC Sediment Quality ⁹	
weight	Schedule 10	Other discharge	worker/maintenance ¹	Non- volcanic	Volcanic	ISQG-Low	ISQG-High
Arsenic	100	-	70	12	12	20	70
Cadmium	7.5	-	1300 (at pH =5)	0.65	0.65	1.5	10
Chromium	400	-	6300	55	125	80	370
Copper	325	-	>10,000	45	90	65	270
Lead	250	-	3300	65	65	50	220
Mercury	0.75	-	4200 ⁷	0.45	0.45	0.15	1
Nickel	105	-	1500 ³	35	320	21	52
Zinc	400	-	23000 ³	180	1160	200	410
Naphthalene	-	69 ⁴	-	-	-	0.16	2.1
BaP (equiv)	2.15		35	-	-	0.43	1.6
Pyrene	-	$1.3^4 - 1600^4$	-	-	-	0.665	2.6
C7 – C9	-	$710^4 - 2700^4$	-	-	-	-	-
C10 – C14	-	$560^4 - 1500^4$	-	-	-	-	-
C15 – C36	-	>200004	-	-	-	-	-
DDT- total	0.7 ⁶	-	1000	-	-	0.0016	0.046
Dieldrin	-	190 ⁵	160	-	-	0.00002	0.008
Lindane		14,000 ⁵	-	-	-	0.00032	0.001
Tributyltin	-	-	-	-	-	0.005	0.07

Table 1: Soil and Sediment	Contamination Values	(all in mg/kg dry weight)

Notes:

¹ MfE, 2011, Tables 54 & 55, Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health.

² ALW Plan (Operative in Part, 21 October 2010). It may be inferred from Note 3 of Schedule 10 that where the heavy metal limit for human health is not shown then the limit is equal or higher than the discharge limit.

³ United States Environmental Protection Agency (USEPA), Human Health Medium – Regional Screening Levels (RSL, May 2013) – International risk – based SGVs for residential land use, non-cancer endpoint, all pathways.

 4 MfE, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) Module 4 – Tier 1 Soil Screening Criteria Residential land use, all pathways, for silty clay soil with surface (<1m) depth of contamination (Table 4.10) and for the protection of groundwater quality for potable use (Table 4.20) with surface contamination (<1 m) and depth to groundwater as 4 m.

⁵ MfE, Identifying, Investigating and Managing Risks Associated with Former Sheep-dip Sites, November 2006 – SGVs for human health for commercial/industrial (unpaved) land use (Table 4).

⁶ Note 2 of Schedule 10 states that this value applies to the redevelopment phase. Upon completion of the land development the PA limit is 12 mg/kg, which is the same value as in the Proposed Auckland Unitary Plan (PAUP).

⁷ Inorganic mercury compounds.

⁸ ARC (2001), Background concentrations of inorganic elements in soils from the Auckland region, TP 153.

⁹ ANZECC (2000), Table 3.5.1- ISQG, Low trigger values and High trigger values.

4.5.2 Groundwater: Site Assessment Criteria

The appropriate groundwater guideline values are presented in Table 2 below and were used to assess groundwater at the site. These values are based on Rules 5.5.57(e) and 5.5.58 (c) of the ALW Plan, and controls of provision H.4.18.2.1.1.2 of the PAUP, see Section 4.3.2. We note that the marine values are presented for comparative purposes as Rule 5.5.42A (i) refers to freshwater trigger level, however, the site is located in the CMA and the groundwater is likely to discharge to the marine environment and therefore the marine values are considered.

Parameter	95% level of protection	of species' ANZECC (2000)	Adopted Groundwater Site Assessment Criteria
	Freshwater	Marine	
Arsenic	0.024	ID ²	0.240
Cadmium	0.0002	0.0055	0.055
Chromium	0.001	0.0044	0.044
Copper	0.0014	0.0013	0.013
Lead	0.0034	0.0044	0.044
Mercury	0.0006	0.0004	0.004
Nickel	0.011	0.070	0.7
Zinc	0.008	0.015	0.150
Naphthalene	0.016	0.070	0.7
BaP (equiv)	0.0002 ³	ID	0.002
Pyrene	-	-	-
C7 – C9	-	-	-
C10 – C14	-	-	-
C15 – C36	-	-	-

Table 2: Guideline values for	or selected	groundwater	contaminants.
-------------------------------	-------------	-------------	---------------

Notes:

¹ All units are in mg/L (=g/m³, as reported by Hill Laboratories, see Appendix E).

² ID means insufficient data to derive a reliable trigger value.

 3 A low reliability trigger value of 0.2 µg/L was derived for benzo[a]pyrene using the statistical distribution method (95% protection). This chemical has the potential to bio-accumulate but this has not been accounted for in this figure. Alternative protection levels were 99% 0.1 µg/L, 90% 0.4 µg/L, 80% 0.7 µg/L. The 99% figure is recommended if no data are available on bioaccumulation effects at specific sites. This is applicable to both fresh and marine waters and should only be used as an indicative interim working level. Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 2 Aquatic Ecosystems - Rationale and Background Information (Chapter 8) October 2000.

5 HISTORICAL AERIAL PHOTOGRAPH REVIEW

A review of historical aerial photography was carried out to determine current and past land uses that had the potential to cause soil, sediment or groundwater contamination. The following two sources were used:

- a) Council Geographical Information System (GIS), using their publicly available website.
- b) The aerial photographic archive held by Tonkin & Taylor Ltd (T&T) at their offices in Newmarket, Auckland.

The historical aerial photographs reviewed covered the period 1940, 1950, 1960, 1970, 1980, 1990 and 2000. The review was conducted for the whole of Watercare's future NH2 Watermain project and therefore includes the Project site.

Table 3 provides a summary of the historical aerial photograph review. Appendix A provides a detailed review of the historical aerial photographs.

Table 3: Summary of Historical Aerial Photograph Review

Section	Description
Fred Taylor Road to Greenhithe Bridge	All roads for Fred Taylor/Hobsonville road exist in 1950s. Surrounded by farmland and mixed agricultural uses. Port facilities to the south of proposed Greenhithe bridge area in 1970s. Greenhithe bridge built by 1980s. Residential development increasing over time, increasing mostly after 1980s.
	In the 1920s Hobsonville peninsula became an airfield and was occupied by the Royal New Zealand Air Force (RNZAF), see also Section 3.1 for a brief history of the air base. The historical aerial photographs show that buildings such as aircraft hangers and the grass airfield were located at least 100 m east to south-east from the preferred route, located near the western portion of Buckley Ave. Therefore there is low risk that former RNZAF activities have contaminated the ground near the preferred route.
	A large part of Hobsonville peninsula was used by the Ministry of Defence for housing, especially near the end (eastern end) of Buckley Ave. The preferred route only uses a relatively small portion of the western side of Buckley Ave and there is no reason to suspect that HAIL activities were carried out in the western portion of Buckley Ave.
Greenhithe to Tauhinus Road, Pounamu Avenue, Sunny View Road, Kyle Road and Bush Road	Most roads exists in 1950's, land use is predominantly rural residential with some farmland, residential development increasing over time, particularly from 1980s. Sunnyview Road built by 1970s, Pounamu Road constructed during 1990s.
Greenhithe to Bush Road (Upper Harbour Drive)	Albany Highway exists in 1950s. Upper harbour highway is just through farmland and bush, built in 2000s. Residential development increases particularly from 1990s.

5.1 Brief History of Hobsonville Airbase

In 1925 an airfield was established on the Hobsonville land and the Royal New Zealand Air Force (RNZAF) moved to the base in 1928. It occupied a flying field and seaplane slipway and established itself as a RNZAF primary flying boat base until 1967.

In 1965 the RNZAF Base Hobsonville and nearby RNZAF Base Whenuapai merge as RNZAF Base Auckland and Hobsonville became base primarily for helicopters.

In 2002 the Government decommissioned Hobsonville and the remaining operation moved to Ohakea.

Table 3 and the brief history of Hobsonville Airbase do not indicate that activities or industries presented on the Hazardous Activities and Industries List (HAIL) are located within the Project site. A copy of the HAIL is presented in Appendix B.

We note that item H of the HAIL states that:

"Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment".

It is possible that the sediments located within the causeway works area, forming part of the overall Project site area, have become contaminated from run-off from surrounding land uses. Therefore the sediment contaminant levels have been tested as part of this report, primarily for off-site disposal options.

6 COUNCIL SITE CONTAMINATION ENQUIRY

A site contamination enquiry was lodged with Council on 26 February 2014. The site contamination enquiry was for the whole of Watercare's future NH2 Watermain project and therefore includes the Project site.

Council's response to the site contamination enquiry is contained in Appendix C. It shows that there are no pollution incident files or resource consents, such as contaminated site discharge consents, issued at or near the Project site.

There are no groundwater users within 500 m of the the Project site. The site is located over the Kumeu Waitemata Aquifer, as identified on Map Series 2, Map 7 of the ALW Plan planning maps, and this is a High Use Aquifer Management Area. However, this is a deep aquifer and the shallow groundwater that may be affected by the proposed valve chamber excavation work, is likely to be perched groundwater and the shallow perched groundwater quality has been assessed as part of this study (see Section 11.3).

In addition to the site contamination enquiry Council's Environmental Control, Licensing & Compliance Services (ECLCS) was also contacted in the period 24 February to 11 March 2014 to assess if there are HAIL sites located on or immediately adjacent to the whole NH2 Watermain project.

No specific information was received from ECLCS in this period, however, considering that both the historical aerial photograph review and the site contamination enquiry did not indicate that HAIL activities were or are carried out on the Project site, it is considered reasonable to assume that Council ECLCS also does not classify the Project site as a HAIL site.

7 POTENTIAL FOR CONTAMINATION

The potential for soil and groundwater contamination is considered low since the desk study review indicate that no activities or site uses listed on the HAIL were carried out on or within the Project site.

Sediments located in the Project site have the potential to be contaminated from run-off from surrounding land uses, as previously discussed in Section 5.1. The likely contaminants are heavy metals, organic hydrocarbons and pesticides.

The effects of potential sediment contamination are:

- a) Environmental effects, in terms of ecology.
- b) Human health effects in terms of construction workers and environmental effects in terms of on-site reuse in mudcrete or where off-site disposal to land is required (when sediment becomes a soil).

The ecological effects of sediment contamination are presented in the Technical Report D- Ecology, Greenhithe Bridge Watermain Duplication and Causeway, Volume 2.

In order to enable construction work to be undertaken in an efficient manner with minimal delays to the construction programme testing of the sediment was undertaken to determine the existing sediment contaminant levels and to determine sediment spoil disposal options. This was carried out as Phase 2 of the scope of work, see Section 3.4, and is further discussed in Section 8 below.

Similarly soil and groundwater sampling and testing was carried out at the proposed jacking and receiving pits (west end of Project area) and proposed pit for the east end valve chamber (east end of Project area) as this would enable the future site contractor with the preparation of site specific Health & Safety Plans (to protect excavation workers) and assist with soil and groundwater disposal options during the construction works. This work was also carried out as the Phase 2 scope of work and is further discussed in Section 8 below.

8 SITE INVESTIGATION WORKS

8.1 Objective

The objective of the site investigation works was to assess the soil, groundwater and sediment contaminant levels in the areas of the Project site that would be disturbed during the earthworks. The data obtained from the site investigation works, and field observations in terms of visual or olfactory evidence of ground contamination, would be used to establish the implications of the proposed works.

8.2 Sampling Methodology: Soil, Sediment and Groundwater

Watercare engaged Jacobs to prepare a sampling methodology for soil, groundwater and sediment sampling in April 2014. The sampling methodology provided Watercare's site investigation contractor Opus International Consultants Ltd (Opus) with the proposed sample locations and method of obtaining samples. A copy of the sampling methodology is presented in Appendix D.

8.3 Fieldwork

The fieldwork was undertaken by Opus in the period May to June 2014 in accordance with the sampling methodology.

The locations of the soil, sediment and groundwater samples obtained within the site are presented in Table 1 of the report *Environmental Sampling and Testing Report, NH2 Watermain, Greenhithe and Stream Crossings*, reference GS14/091 (Opus, 2014). Relevant pages of this report are contained within Appendix E. We note that the fieldwork included sampling at a number of stream crossings located outside the Project site but forming part of the remainder of the whole of Watercare's future NH2 Watermain project and these pages have been removed from the Opus report.

All samples were couriered to R J Hills Laboratory Ltd (Hills Laboratory) by Opus using appropriate contaminated land documentation such as chain of custody and request for analysis forms.

Copies of the borehole logs of the environmental sampling locations are contained within Appendix F (note, these borehole logs are also contained within Appendix B of the Opus Geotechnical Factual Report GS14/089).

None of the boreholes recorded visual or olfactory evidence of ground contamination.

8.4 Additional Fieldwork

An additional three sediment samples were taken in the area of the proposed construction platform of the NI project on 21 November 2014. The location of the three sediment samples is shown on Drawing 2010674.004 contained in Appendix J. The approximate location of the proposed construction platform is also shown on Drawings 2010673.851 and 2010674.001. Volume 3 Drawings- Greenhithe Bridge Watermain Duplication and Causeway also provides drawings showing the location of the Northern Interceptor Project Proposed Construction Platform.

The three sediment samples were obtained by staff from T&T and no visual or olfactory evidence of ground contamination was observed. The sediment samples were couriered to Hill Laboratories by T&T using appropriate contaminated land documentation such as chain of custody and request for analysis forms. The three sediment samples were tested for similar contaminants as those obtained in the period May to June 2014 (see Section 8.3).

9 LABORATORY TESTING

The laboratory testing comprised the testing of soil, sediment and groundwater samples for the following parameters:

- a) Suite of heavy metals: Arsenic, Cadmium, Chromium (total), Copper, Lead, Nickel, Zinc and Mercury.
- b) Total Petroleum Hydrocarbons (TPH).
- c) Polycyclic Aromatic Hydrocarbons (PaH).
- d) Organochlorine Pesticides (OCP).
- e) Tributyl Tin (TBT) (sediment samples only).
- f) Total Organic Carbon (TOC) (sediment samples only).
- g) For ecological report- the heavy metals extractable Copper, Lead and Zinc, as per Technical Publication TP 168, revised edition, *Blueprint for Monitoring Urban Receiving Environments* (ARC, 2004).

For the May to June fieldwork the samples tested and laboratory testing regime is presented in Table 3 of the environmental sampling and testing report contained in Appendix E.

For the additional fieldwork the laboratory test results are presented in Appendix J.

For the Project site a total of fourteen sediment samples were tested (including one duplicate), seven soil samples and one groundwater sample.

An assessment of the test results is presented in Section 11 of this report.

10 OFF-SITE DISPOSAL OF SOIL AND SEDIMENT

Off-site disposal of soil and sediment is typically at one of three facilities:

- a) A licensed cleanfill site.
- b) A licensed managed fill site.
- c) A licensed solid waste landfill.

Disposal at a cleanfill site requires soil contaminant levels to be below local background levels of inorganic contaminants and have no organic or hydrocarbon contamination. The local background levels used in this report are those presented in the ARC TP 153 (ARC, 2001), previously discussed in Section 4.4.1. Slightly contaminated soils, for example, soils with contaminant levels above background levels but typically below ALW-Plan Schedule 10 criteria, may be disposed of at a licensed managed fill if the site soil/sediment contaminant levels meet the resource consent criteria that the licensed managed fill site operates under. There are several licensed managed fill sites within the greater Auckland area including Puketutu Island, Greenmount, Three Kings and Whangarata Quarry at Ridge Road in Pokeno. The Redvale landfill, a licensed solid waste landfill, can also accept managed fill at a discounted rate.

Typical managed fill criteria for a range of soil contaminants are listed in Table 4 below, however, it is recommended that the future contractor contacts the relevant licensed managed fill operator to check what their managed fill acceptance criteria are.

Parameter	Concentration (mg/kg)
Arsenic	30 - 100
Cadmium	0.65 - 10
Chromium (total)	125 - 400
Copper	90 - 325
Mercury	0.45 – 0.75
Nickel	105 – 320
Lead	65 – 250
Zinc	400 - 1160
TPH: C7-C9	20 - 300
TPH: C10-C14	5 - 500
TPH: C15-C36	500 - 10,000
BaP(equiv)	0.1 - 25
DDT (total)	0.35 - 12

Table 4: Range of Typical Managed Fill Contaminant Acceptance Criteria

Fill not accepted by a licensed managed fill site must be disposed of at a licensed solid waste landfill such as the Redvale landfill, Hampton Downs landfill or the Whitford landfill. A licensed solid waste landfill also operates under resource consent criteria stating maximum allowable soil contaminant concentrations and/or maximum leachable contaminant concentrations, typically specified via a Toxic Characteristic Leaching Procedure (TCLP) test. If the soil contaminant concentrations exceed the solid waste landfill TCLP criteria the soil may require treatment such as cement or lime stabilisation prior to acceptance by a licensed solid waste landfill.

It is recommended that the contractor contacts the appropriate off-site disposal site prior to earthworks starting at the site. The soil and sediment laboratory test results presented in the report may assist the contractor in obtaining the appropriate off-site soil and sediment disposal location(s).

11 ASSESSMENT OF SITE TEST RESULTS

The assessment of the site test results has been made against national and Auckland regulatory criteria and against the off-site disposal criteria, for soil, sediment and groundwater. This is discussed Sections 11.1 to 11.3 below.

11.1 Soil Contamination Assessment

The table in Appendix G provides an assessment of the seven soil samples against the SGVs from the NES, the Schedule 10 criteria of the ALW Plan and the TP 153 Auckland cleanfill criteria.

All TPH, PaH and OCP test results were below the laboratory limit of detection (LOD) testing (except for pyrene at three samples where it was at the LOD).

All heavy metals were below the SGVs and Schedule 10 criteria. Therefore no resource consents from Council under the ALW Plan or the NES Soil are required.

All heavy metals were also below the TP153 non-volcanic criteria. Therefore the spoil from the proposed valve chamber excavation locations can be disposed off-site as cleanfill, or it can be reused on-site.

11.2 Sediment Contamination Assessment

The table in Appendix H provides an assessment of the fourteen sediment samples against the Schedule 10 criteria of the ALW Plan, TP 153 Auckland background soil concentration (typically used as cleanfill criteria) and the ANZECC sediment quality guidelines.

All TPH, OCP and TBT test results were below the laboratory LOD.

Benzo(a)pyrene (BaP), one of the PaHs, was reported in four out of fourteen samples, the highest at sample location HA214a, where the Benzo(a)pyrene (BaP) equivalent concentration was 0.27 mg/kg. The HA214a BaP concentration of 0.27 mg/kg is well below the NES-SGV of 35 mg/kg, also below the ALW Plan Schedule 10 criteria of 2.15 mg/kg and also below the ANZECC ISQG-Low value of 0.43 mg/kg. Another PaH parameter, Phenanthrene, was slightly elevated in two sediment samples (0.33 mg/kg and 0.25 mg/kg) when assessed against the ISQG-Low value (0.24 mg/kg) but both samples were well below the ISQG-High value (1.5 mg/kg).

All heavy metals were below the Schedule 10 criteria.

All heavy metals, PaH and OCP test results were below the Schedule 10 criteria (and therefore also below the criteria listed in provision H.4.5.2.1.3 of the PAUP, see Section 4.4).

Arsenic was slightly elevated in eight out of fourteen sediment samples when compared to the Auckland background values for non-volcanic (12 mg/kg). In three of the eight samples Arsenic exceeded the ANZECC ISQG-Low criteria.

The 95% UCL of the eleven Arsenic sediment test results is 19.98 mg/kg, say 20 mg/kg (see Appendix I), above the 12 mg/kg concentration of Arsenic in Auckland background soils (for volcanic and non-volcanic soils). Therefore if the sediment requires off-site disposal during future earthworks at the site, it should <u>not</u> be disposed of at a licensed cleanfill site, but to a licensed managed fill site or a licensed solid waste landfill.

Since the 95% UCL of Arsenic is 20 mg/kg, i.e. the same as the ISQG-Low value, it is considered that the sediment can remain at its current location, or be reused on-site using, for example, mudcrete.

At one of the eleven sample locations Mercury was slightly elevated (0.20 mg/kg), compared to the ISQG-Low criteria of 0.15 mg/kg, but below the Auckland background value for Mercury (0.45 mg/kg).

The 95% UCL of Mercury is 0.12 mg/kg (see Appendix I) which is less than the ISQG-Low of 0.15 mg/kg. It is considered that the sediment can remain at its current location, or be reused on-site using, for example, mudcrete.

11.3 Groundwater Contamination Assessment

The groundwater test results from borehole BH201, located near the proposed receiving pit located south of SH18, see site plan contained in Appendix E, have been presented in Table 5, together with the assessment criteria from Section 9.4.2.

Table 5 shows that all test results are less than the laboratory LOD and less than the PA criteria for Freshwater and less than the PA criteria for Marine water. Therefore no resource consent is required under the ALW Plan.

If it is required to temporarily remove groundwater during the construction of the receiving pit located south of SH18, it may be discharged to the stormwater system.

Parameter	Groundwater Test Results, BH201	ALW Plan Permitted Activity Limits- Schedule 11-Table 3.4.1 ANZECC (2000) ¹		Adopted Groundwater Site Assessment Criteria	
		Freshwater	Marine		
Arsenic	<0.011	0.024	ID ²	0.240	
Cadmium	<0.00053	0.0002	0.0055	0.055	
Chromium	<0.0053	0.001	0.0044	0.044	
Copper	<0.0053	0.0014	0.0013	0.013	
Lead	<0.0011	0.0034	0.0044	0.044	
Mercury	<0.0008	0.0006	0.0004	0.004	
Nickel	<0.0053	0.011	0.070	0.7	
Zinc	<0.011	0.008	0.015	0.150	
Naphthalene	<0.0005	0.016	0.070	0.7	
BaP (equiv)	<0.00010	0.0002 ³	ID	0.002	
Pyrene	<0.0002	-	-	-	
C7 – C9	<0.10	-	-	-	
C10 – C14	<0.2	-	-	-	
C15 – C36	<0.4	-	-	-	

 Table 5: Groundwater Test Results and Guideline Values for Groundwater Contaminants.

Notes:

¹ All units are in mg/L (=g/m³, as reported by Hill Laboratories, see Appendix E).

² ID means insufficient data to derive a reliable trigger value.

 3 A low reliability trigger value of 0.2 µg/L was derived for benzo[a]pyrene using the statistical distribution method (95% protection). This chemical has the potential to bio-accumulate but this has not been accounted for in this figure. Alternative protection levels were 99% 0.1 µg/L, 90% 0.4 µg/L, 80% 0.7 µg/L. The 99% figure is recommended if no data are available on bioaccumulation effects at specific sites. This is applicable to both fresh and marine waters and should only be used as an

indicative interim working level. Australian and New Zealand Guidelines for Fresh and Marine Water Quality Volume 2 Aquatic Ecosystems - Rationale and Background Information (Chapter 8) October 2000.

12 ASSESSMENT OF ENVIRONMENTAL EFFECTS

12.1 Conceptual Model Development

A typical conceptual model for soil and groundwater contamination includes three items and their linkages:

- a) Sources.
- b) Pathways.
- c) Receptors.

12.2 Sources

The conceptual site model source can be classified into one of three groups:

- a) Known contamination.
- b) Unknown contamination.
- c) Future Project construction activity related contamination.

Known contamination areas have not been identified for the Project site, both in terms of the desktop study (see Sections 5 and 6) and the actual soil, sediment and groundwater testing at the site (see Section 11).

Unknown contamination areas are those that may be discovered during future excavation works associated with the Project, both in trench excavation and micro-tunnelling. Unknown contamination will be addressed in the CMP, including, as a minimum:

- a) Guidance for site staff on how to recognise ground contamination during excavation works;
- b) Procedures on how to deal with unforeseen ground contamination such as discovery protocols;
- c) Potential ground contamination resulting from construction activities such as inadvertent spillages of fuel while refuelling construction plant and equipment.

12.3 Pathways

Pathways are the routes that move contaminants from the source to the receptors. Exposure routes are also considered pathways.

Contaminant pathways that have been considered in the preparation of this report are:

- a) Ingestion of soil.
- b) Dermal contact with soil.
- c) Inhalation of vapours and dust.
- d) Groundwater movement.

- e) Overland flow of contaminated water.
- f) Movement of contaminated sediments.

12.4 Receptors

Receptors are the elements that could be adversely affected by the contaminants and include:

- a) People, in particular excavation and construction workers for the Project.
- b) Ecological receptors, such as flora and fauna.
- c) Groundwater.
- d) Surface water.
- e) Land quality.

12.5 Conclusion: Assessment of Human Health and Environmental Effects

The linkages between source, target and receptor are important in assessing the ground contamination risk during the construction of the proposed pipeline, both in terms of human health and environmental risks.

Soil, sediment and groundwater testing have shown that the potential risk to the receptors, in particular the construction workers, general public and future site users during and following the proposed works will be less than minor.

A conservative approach to manage unforeseen/unknown ground contamination is to use protocols that are designed to avoid, mitigate and remedy the potential for adverse effects on the environment, for example, the erosion and sediment management practices and the CMP. The CMP will be prepared will be once the contractor has been appointed and the CMP will be submitted to Council prior to construction as discussed in Section 2.3.4 of the AEE.

It is therefore considered that potential adverse effects on the environment arising from unforeseen/unknown ground contamination at the Project site can be avoided, mitigated and remedied by ensuring that the contractor adheres to the protocols listed in the CMP.

13 CONCLUSIONS

13.1 Conclusions

13.1.1 Statutory Assessment

- a) No activity or industry listed on the HAIL was identified within the Project site and priority contaminants are shown to be below background levels. It is therefore considered that the requirements of the NES do not apply to the Project site.
- b) The Project site's soil, sediment and groundwater contaminant levels have been assessed against the requirements of the contaminated land rules of the ALW Plan and the PAUP.

13.1.2 Sediment Contamination Assessment

- c) The DSI shows that the sediment contaminant levels are:
 - i. Below the laboratory level of detection for organic parameters except for minor amounts of PaHs.
 - ii. Below the Auckland background concentrations for inorganic soils except for Arsenic.
 - iii. Below the soil contaminant criteria specified in Rule 5.5.41 of the ALW Plan and below the soil contaminant criteria specified in provision H.4.5.2.1.3 of the PAUP.
- d) Off-site sediment disposal may be at a licensed managed fill site or licensed solid waste landfill, i.e. not to a licensed cleanfill site. On-site disposal of the sediment or reuse of the sediment in, for example, mudcrete is permitted, from a contamination perspective.
- e) The sediment contamination levels are below the Interim Sediment Quality Guidelines- Low Trigger Values (ANZECC, 2000), when using the 95% Upper Confidence Limit of the test results.
- f) An ecological assessment for the Project is provided in Technical Report D- Ecology, Greenhithe Bridge Watermain Duplication and Causeway, Volume 2.

13.1.3 Soil Contamination Assessment

- g) No resource consent is required under the ALW Plan since the requirements of Rule 5.5.41 are met, i.e. the soil contaminant levels are below the Schedule 10 contaminant criteria and other criteria referenced in Rule 5.5.41. Equally no resource consent in required under provision H.4.5.2.1.3 of the PAUP since the Schedule 10 criteria are the same as those listed in Table 1 of provision H.4.5.2.1.3, see Section 4.4.
- h) The soil contaminant levels meet the Auckland background soil quality for non-volcanic soils and therefore spoil can be removed off-site to a licensed cleanfill site, if required. Equally the spoil can be reused on-site.

13.1.4 Groundwater

i) No resource consent is required under the ALW Plan since the requirements of Rules 5.5.57(e) and 5.5.58(c) are met, i.e. the discharge of groundwater contaminant levels, after

reasonable mixing, are below the ANZECC (2000) Freshwater criteria for 95% level of protection of species. No resource consent is required under the PAUP since the requirements of provision H.4.18.2.1.1.2 are met.

j) If temporary groundwater disposal is required during construction of the proposed valve chambers it may be disposed of as stormwater.

13.1.5 Assessment of Effects: Potential Soil, Sediment and Groundwater Contamination

- k) It is considered that the potential soil, sediment and groundwater contamination effects related to the construction, operation and maintenance of the Project are less than minor.
- I) It is considered that potential adverse effects on the environment arising from unforeseen/unknown ground contamination at the Project site can be avoided, mitigated and remedied by ensuring that the contractor adheres to the protocols listed in a Project CMP. The CMP will be prepared once the contractor has been appointed and the CMP will be submitted to Council prior to construction as discussed in Section 2.3.4 of the AEE.

14 LIMITATIONS

The sole purpose of this report is to present the findings of a Soil, Sediment and Groundwater Contamination Assessment carried out by Jacobs for the Client in connection with the Greenhithe Bridge Watermain Duplication and Causeway project. This report was produced in accordance with and is limited to the scope of services set out in the contract between Jacobs and the Client (Watercare Services Limited). That scope of services, as described in this report, was developed with the Client.

Sampling techniques, by definition, cannot determine the conditions between the sample points and so this report cannot be taken to be a full representation of the sub-surface conditions. This report only provides an indication of the likely sub surface conditions.

In preparing this report, Jacobs has relied upon, and presumed accurate, any information (or confirmation of the absence thereof) provided by the Client and from other sources. Except as otherwise stated in the report, Jacobs has not attempted to verify the accuracy or completeness of any such information. If the information is subsequently determined to be false, inaccurate or incomplete then it is possible that our observations and conclusions as expressed in this report may change.

Jacobs has prepared this report in accordance with the usual care and thoroughness of the consulting profession, for the sole purpose described above and by reference to applicable standards, guidelines, procedures and practices at the date of issue of this report. For the reasons outlined above, however, no other warranty or guarantee, whether expressed or implied, is made as to the data, observations and findings expressed in this report, to the extent permitted by law.

This report should be read in full and no excerpts are to be taken as representative of the findings. No responsibility is accepted by Jacobs for use of any part of this report in any other context.

This report has been prepared on behalf of, and for the exclusive use of, Jacobs's Client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the Client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this report by any third party.

15 REFERENCES

References that were considered in the preparation of the AEE were:

- a) MfE, 2011, Contaminated Land Management Guidelines No. 5, Site Investigation and Analysis of Soils, Revised 2011, First published February 2004, Publication reference ME 1073.
- b) Opus, 2014a, *Environmental Sampling & Testing Report- NH2 Watermain Greenhithe and Stream Crossings*, for Watercare Services Ltd, August 2014, reference GS14/091.
- c) Opus, 2014b, *Geotechnical Factual Report, NH2 Advanced Works*, for Watercare Services Ltd, August 2014, reference GS14/089.
- d) Jacobs (2014), Sampling Methodology- Ground Contamination- North Harbour No. 2 Watermain, by Jacobs/SKM, for Watercare Services Ltd, revision 1 final, 05 May 2014, ref. AE04521.
- e) Jacobs/URS (2014), *Preliminary Design Report- Greenhithe Bridge Watermain Duplication*, draft final- October 2014, for Watercare Services Ltd.

16 ABBREVIATIONS

- AC: Auckland Council
- AEE: Assessment of Environmental Effects
- ALW Plan: Auckland Council Regional Plan: Air, Land & Water
- ANZECC: Australian and New Zealand Guidelines for Fresh and Marine Water Quality Guidelines (2000 version)
- ARC: Auckland Regional Council (now AC)
- BMP: Best Management Practices
- CLS: Concrete lined steel
- CMP: Construction Management Plan
- DSI: Detailed Site Investigation
- GBWD: Greenhithe Bridge Watermain Duplication
- GIS: Geographical Information System
- HAIL: Hazardous Activities and Industries List
- HM: Heavy Metals
- ISQG: Interim Sediment Quality Guidelines (as per ANZECC)
- Jacobs: Jacobs New Zealand Ltd
- km: kilometre
- ECLCS: Environmental Control, Licensing & Compliance Services
- LOD: Limit of Detection (analytical testing)
- m: metre
- MfE: Ministry for the Environment
- mm: millimetre
- NES: Resource Management (National Environmental Standard for Assessing & Managing Contaminants in Soil to Protect Human Health) Regulations 2011
- NH2: North Harbour No. 2 (watermain)
- NI: Northern Interceptor
- no.: number

- OCP: Organochlorine Pesticides
- Opus: Opus International Consultants Ltd
- PA: Permitted Activity
- PaH Polycyclic Aromatic Hydrocarbons
- PAUP: Proposed Auckland Unitary Plan
- PE: polyethylene
- PSI: Preliminary Site Investigation
- RMA: Resource Management Act
- RNZAF: Royal New Zealand Air Force
- SCS: Soil Contaminant Standard
- SGV: Soil Guideline Value
- SKM: Sinclair Knight Merz Ltd (now part of Jacobs)
- T&T: Tonkin & Taylor Ltd
- TBT: Tributyl Tin
- TCLP: Toxic Characteristic Leaching Procedure
- TOC: Total Organic Carbon
- TP: Technical Publication
- TPH: Total Petroleum Hydrocarbons
- UCL: Upper Confidence Limit (as per MfE Guideline No. 5, 2004)
- URS: URS New Zealand Ltd
- Watercare: Watercare Services Ltd

APPENDIX A HISTORICAL AERIAL PHOTOGRAPH REVIEW

no. Section	Decade notes	additional information
4 Fred Taylor to Greenhithe bridge	1940 no photo	
4 Fred Taylor to Greenhithe bridge	1950 road exists, surrounded by mixed agriculture and farming. Alternate route through motorway is farmland. No bridge. A large part of Hobsonville peninsula was used by the Ministry of Defence for housing, especially near the end (eastern end) of Buckley Ave. The preferred route only uses a relatively small portion of the western side of Buckley Ave and there is no reason to suspect that HAIL activities were carried out in the western portion of Buckley Ave.	photos from 1959
4 Fred Taylor to Greenhithe bridge	1960 no notes	
4 Fred Taylor to Greenhithe bridge	1970 still farmland on alternate routes. Port and possibly factories south of the Greenhithe bridge. Hobsonville road exists. Some houses have been buil ton hobsonville road/Brigham creek. New circular building near Brigham Creek	run 4598 1972
4 Fred Taylor to Greenhithe bridge	1980 no real changes, more residentual development on hobsonville road. Greenhithe bridge exists	run 5783 1981
4 Fred Taylor to Greenhithe bridge	1990 no notes	
4 Fred Taylor to Greenhithe bridge	2000 more houses. Motorway for alternate route built lates 2000s	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1940 no photo	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1950 no bridge. Pounapu road doesn't exist - pipeline corsses reserve/farmland. Other roads exist. Photo ends at kyle road. land use is rural residential	photos from 1959
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1960 no notes	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1970 no Pounamu Road, farmland. Sunnyview road now existis	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1980 greenhithe bridge exists. No kyle/orwell road exists and crosses farmland, no structures. Kyle road east exists	photo SN 5783
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	1990 kyle road exists. Pounamu road not yet fully constructed	
5 Greenhithe to Tauhinus Road, Pounamu Ave, Sunny View, Kyle Road and Bush Road	2000 new subdivisions, more housing development	
6 Greenhithe to Bush Road (upper harbour Dr)	1940 no photo	
6 Greenhithe to Bush Road (upper harbour Dr)	1950 road exists mostly through reserve and some farm land. Albany highway exists	photos from 1959
6 Greenhithe to Bush Road (upper harbour Dr)	1960 no notes	
6 Greenhithe to Bush Road (upper harbour Dr)	1970 all reserve bush and same farm land around roads. Concrete pad east of William pitcher place - to be checked	run 4598/7 1972
6 Greenhithe to Bush Road (upper harbour Dr)	1980 concrete pad east of William pitcher place has building on it	SN5783
6 Greenhithe to Bush Road (upper harbour Dr)	1990 more housing development in the area	
6 Greenhithe to Bush Road (upper harbour Dr)	2000 Upper harbour highawy built.	

no.

APPENDIX B HAZARDOUS ACTIVITIES AND INDUSTRIES LIST

Hazardous Activities and Industries List (HAIL)

October 2011

A Chemical manufacture, application and bulk storage

- 1. Agrichemicals including commercial premises used by spray contractors for filling, storing or washing out tanks for agrichemical application
- 2. Chemical manufacture, formulation or bulk storage
- 3. Commercial analytical laboratory sites
- 4. Corrosives including formulation or bulk storage
- 5. Dry-cleaning plants including dry-cleaning premises or the bulk storage of dry-cleaning solvents
- 6. Fertiliser manufacture or bulk storage
- 7. Gasworks including the manufacture of gas from coal or oil feedstocks
- 8. Livestock dip or spray race operations
- 9. Paint manufacture or formulation (excluding retail paint stores)
- 10. Persistent pesticide bulk storage or use including sport turfs, market gardens, orchards, glass houses or spray sheds
- 11. Pest control including the premises of commercial pest control operators or any authorities that carry out pest control where bulk storage or preparation of pesticide occurs, including preparation of poisoned baits or filling or washing of tanks for pesticide application
- 12. Pesticide manufacture (including animal poisons, insecticides, fungicides or herbicides) including the commercial manufacturing, blending, mixing or formulating of pesticides
- 13. Petroleum or petrochemical industries including a petroleum depot, terminal, blending plant or refinery, or facilities for recovery, reprocessing or recycling petroleum-based materials, or bulk storage of petroleum or petrochemicals above or below ground
- 14. Pharmaceutical manufacture including the commercial manufacture, blending, mixing or formulation of pharmaceuticals, including animal remedies or the manufacturing of illicit drugs with the potential for environmental discharges
- 15. Printing including commercial printing using metal type, inks, dyes, or solvents (excluding photocopy shops)
- 16. Skin or wool processing including a tannery or fellmongery, or any other commercial facility for hide curing, drying, scouring or finishing or storing wool or leather products
- 17. Storage tanks or drums for fuel, chemicals or liquid waste
- 18. Wood treatment or preservation including the commercial use of anti-sapstain chemicals during milling, or bulk storage of treated timber outside

B Electrical and electronic works, power generation and transmission

1. Batteries including the commercial assembling, disassembling, manufacturing or recycling of batteries (but excluding retail battery stores)

- 2. Electrical transformers including the manufacturing, repairing or disposing of electrical transformers or other heavy electrical equipment
- 3. Electronics including the commercial manufacturing, reconditioning or recycling of computers, televisions and other electronic devices
- 4. Power stations, substations or switchyards

C Explosives and ordinances production, storage and use

- 1. Explosive or ordinance production, maintenance, dismantling, disposal, bulk storage or re-packaging
- 2. Gun clubs or rifle ranges, including clay targets clubs that use lead munitions outdoors
- 3. Training areas set aside exclusively or primarily for the detonation of explosive ammunition

D Metal extraction, refining and reprocessing, storage and use

- 1. Abrasive blasting including abrasive blast cleaning (excluding cleaning carried out in fully enclosed booths) or the disposal of abrasive blasting material
- 2. Foundry operations including the commercial production of metal products by injecting or pouring molten metal into moulds
- 3. Metal treatment or coating including polishing, anodising, galvanising, pickling, electroplating, or heat treatment or finishing using cyanide compounds
- 4. Metalliferous ore processing including the chemical or physical extraction of metals, including smelting, refining, fusing or refining metals
- 5. Engineering workshops with metal fabrication

E Mineral extraction, refining and reprocessing, storage and use

- 1. Asbestos products manufacture or disposal including sites with buildings containing asbestos products known to be in a deteriorated condition
- 2. Asphalt or bitumen manufacture or bulk storage (excluding single-use sites used by a mobile asphalt plant)
- 3. Cement or lime manufacture using a kiln including the storage of wastes from the manufacturing process
- 4. Commercial concrete manufacture or commercial cement storage
- 5. Coal or coke yards
- 6. Hydrocarbon exploration or production including well sites or flare pits
- 7. Mining industries (excluding gravel extraction) including exposure of faces or release of groundwater containing hazardous contaminants, or the storage of hazardous wastes including waste dumps or dam tailings

F Vehicle refuelling, service and repair

- 1. Airports including fuel storage, workshops, washdown areas, or fire practice areas
- 2. Brake lining manufacturers, repairers or recyclers
- 3. Engine reconditioning workshops
- 4. Motor vehicle workshops
- 5. Port activities including dry docks or marine vessel maintenance facilities

- 6. Railway yards including goods-handling yards, workshops, refuelling facilities or maintenance areas
- 7. Service stations including retail or commercial refuelling facilities
- 8. Transport depots or yards including areas used for refuelling or the bulk storage of hazardous substances

G Cemeteries and waste recycling, treatment and disposal

- 1. Cemeteries
- 2. Drum or tank reconditioning or recycling
- 3. Landfill sites
- 4. Scrap yards including automotive dismantling, wrecking or scrap metal yards
- 5. Waste disposal to land (excluding where biosolids have been used as soil conditioners)
- 6. Waste recycling or waste or wastewater treatment
- H Any land that has been subject to the migration of hazardous substances from adjacent land in sufficient quantity that it could be a risk to human health or the environment
- I Any other land that has been subject to the intentional or accidental release of a hazardous substance in sufficient quantity that it could be a risk to human health or the environment

APPENDIX C COUNCIL SITE CONTAMINATION ENQUIRY

18 March 2014

Sinclair Knight Merz Ltd PO Box 9806 Newmarket Auckland 1023

Attention: Walter Starke

Dear Walter

Site Contamination Enquiry – Watercare Proposed North Harbour No. 2 Watermain, various sites from Titirangi to Albany

This letter is in response to your enquiry requesting available site contamination information for the sites stated on your route plans. The following details are based on information available from the former Auckland Regional Council records system and information currently held by the Auckland Council Natural Resources and Specialist Input Unit. The details provided below exclude any property information held by the former district/city councils.

The tables in Attachment A outline the reference for the site-specific files and pollution incident files available for the subject sites.

The general catchment files and site visit files were not searched. These files contain pollution incidents where the source of pollution was not traced to a particular site, site visits where no follow-up correspondence was required and some information from archived files.

If the above sites are coastal or beside a river, it is possible that historic, unconsented reclamation may have occurred. The Auckland Council, Natural Resources and Specialist Input, Coastal Team may be able to provide further information.

The records reviewed as part of this Site Contamination Enquiry search do not identify individual horticultural sites in the region. However, there is a possibility that horticultural activities may have occurred at the sites. The local Auckland Council customer service centre, specific to the area of the site may be able to provide relevant information where former horticultural sites have been mapped.

If you are concerned that a historic land use (such as filling) may have caused the underlying soils to become contaminated, it is recommended that you obtain an independent environmental assessment of the sites. Staff from the Auckland Council Earthworks and Contaminated Land Team can provide advice on the results of any evaluation in terms of site remediation and/or potential consent requirements.

The former Auckland Regional Council and current Natural Resources and Specialist Input Unit databases were searched for records of landfill, bore, air discharge, industrial and trade process consents, contaminated site discharge consents, and environmental assessments for the properties adjacent to the sites. Relevant details of the identified consents are appended to this letter (Attachment B).

The details provided are in accordance with the obligation to make information publicly available upon request. While the Auckland Council has carried out the search using its best practical endeavours, it does not warrant its completeness or accuracy and disclaims any responsibility or liability in respect of the information. If you or any other person wishes to act or to rely on this information, or make any financial commitment based upon it, it is recommended that you seek appropriate technical and/or professional advice.

In addition, it is recommended that you contact the local customer service centre of the Auckland Council, specific to the sites being investigated: 50 Centreway Road, Orewa, 1 The Strand, Takapuna and 6 Henderson Valley Road, Henderson as they also may hold files with relevant information.

I trust that this answers your query. If you wish to discuss the matter further, please contact Andrew Kalbarczyk on 301 0101. Should you wish to request any of the files listed above for viewing, please contact the Auckland Council Call Centre on 301 0101 and note you are requesting former Auckland Regional Council records (the records department requires three working days' notice to ensure files will be available).

Please note: the Auckland Council cost recovers officer's time for all site enquiries. A basic enquiry takes approximately 1 - 2.5 hours to search the files and databases in which information is held. As such an invoice for the time involved in this enquiry will follow shortly.

Yours sincerely

PP. Jone

David Hampson Team Leader - Earthworks and Contaminated Land Natural Resources and Specialist Input

Attachment A

File Refere	ence	5-21-3923			
File Name		165A Gler	165A Glengarry Road		
Site Occu	pier Name	Home Improvements Ltd			
Pollution	Date	18/8/06	Comment	Concrete cutting waste entering SW drain	
Pollution	Date	15/8/06	15/8/06 Comment Exposed aggregate wastewater to stormwater		

File Reference	5-11-4459
File Name	149 Glengarry Road
Pollution Date	7/1/11 Comment Wastewater- Sewer overflow

File Reference	5-11-4459 & W096-00-S		
File Name	471-479 West Coast Ro	471-479 West Coast Road (Parks)	
Pollution Date	21/9/11 Comment	Wastewater- Sewer overflow	
Pollution Date	13/6/08 Comment	Wastewater- Sewer overflow	

File Reference	5-11-4650		
File Name	109 Parrs Cross Road		
Pollution Date	14/7/13 Comment Wastewater- Set	wer overflow	
Pollution Date	14/4/13 Wastewater- Set	wer overflow	

File Reference	5-11-4650		
File Name	117-119 Parrs Cross Road		
Pollution Date	12/4/12 Comment Wastewater- Sewer overflow		

File Reference	W224-21-SV	
File Name	1-3 Forest Hill Road	
Site Occupier Name	Gull Petroleum (NZ) Ltd	
Pollution Date	14/11/06 Comment Diesel in SW ditch, outside petrol station	

File Reference	5-41-3653	
File Name	69 Palomino Drive	
Pollution Date	1/3/13 Comment Milky colour in the Opanuku stream	

File Reference	5-11-4459
File Name	61 Palomino Drive
Pollution Date	1/7/11 Comment Manhole overflowing and going into Opanuku stream

File Reference	5-21-2499S	
File Name	Munroe Road	
Pollution Date	16/2/06 Comment Wastewater – Sewage Overflow	

File Reference	5-22-130	5-22-1300		
File Name	Metcalf R	Metcalf Road		
Pollution Date	31/1/01	31/1/01 Comment Spill of oil from rear ended bus		

File Reference	5-22-1429
File Name	Metcalf Road
Pollution Date	27/1/98 Comment Stream turns to sewage in Summer and looks grey

File Reference File Name Site Occupier Name		5-10-2564 & W224-10 393-397 Don Buck Road				
		Pollution	Date	8/9/13	Comment	Petrol spill around 8 litres into the storm drain
Pollution	Date	21/12/10	Comment	Diesel spill		
Pollution	Date	21/1/03	Comment	Spill from Mobil forecourt contained in blocked drain. Approx. 10L to land		

File Reference File Name		5-10-1316			
		Corner Don Buck and Triangle Roads			
Pollution D	ate	26/3/09	Comment	Diesel spill – small amount of 91 petrol having potentially entered S/W system	

File Reference	5-22-1429		
File Name	Metcalf Road		
Pollution Date	27/1/98 Comment Stream turns to sewage in Summer and looks grey		

File Reference File Name Site Occupier Name		5-10-0739 1 Don Buck Road				
		Date	28/9/09	Comment	Odour	
Date	27/1/09	Comment	White dust from PCL Feeds			
Date	5/3/07	Comment	Odour			
Date	31/1/07	Comment	Animal feed smell			
	er Name Date Date Date	1 Don Bud er Name PCL Feed Date 28/9/09 Date 27/1/09 Date 5/3/07	1 Don Buck RoadPCL Feeds LtdDate28/9/09CommentDate27/1/09CommentDate5/3/07Comment			

File Reference	5-11-4459				
File Name	2/41 Don Buck Road				
Pollution Date	20/5/11	Comment	Wastewater - Sewer overflow		

File Reference		5-10-0739				
File Name		1 Red Hills Road				
Site Occupier Name		Mainfeeds Ltd/PCL Industries Ltd				
Pollution	Date	Jan-Jun 2013	Comment	Odour complaints		

File Reference File Name		5-10-0900 Buckley Ave		
Pollution	Date	31/1/01	Comment	Stormwater abuse – chemicals - inorganic

File Reference	5-11-4459			
File Name	5 Pounamu Ave			
Pollution Date	17/8/11 Comment Wastewater – Sewer overflow			

File Reference	5-11-4450				
File Name	4 Sunnyview Road				
Pollution Date	5/12/12 Comment Wastewater – Sewer overflow				

File Reference File Name		5-40-2271		
		177 Kyle Road		
Pollution	Date	30/8/05	Comment	Possible concrete to creek from road
Pollution	Date	16/10/99	Comment	Wash off of burnt lime to a stream resulting from a burst water main

File Reference	5-11-4650		
File Name	End of Kyle Road		
Pollution Date	4/6/12 Comment Wastewater – Sewer overflow		

File Reference	5-11-4459				
File Name	93 Kyle Road				
Pollution Date	22/11/10 Comment Wastewater – Sewer overflow				

File Reference	5-11-3938			
File Name	12 Schnapper Rock Road			
Pollution Date	8/5/09	Comment	Waste to stormwater - concrete cutting without controls	
File Deference	E 44 040			
File Reference	5-11-2423	3		
File Reference File Name		3 pper Rock Roa	3	

File Reference		5-21-3878				
File Name		2/27 Rhinevale Close				
Pollution	Date	26/8/11	Comment	Solvent Odour		
Pollution	Date	19/8/11	Comment	Strong solvent odour smell		

File Reference	5-10-1863
File Name 119 Fred Taylor Drive	
Pollution Date	9/5/13 Comment Strong Odour

File Reference	5-10-1038		
File Name	122 Hobsonville Road		
Pollution Date	24/8/94 Comment	Pollution incident	

File Reference	5-11-1275		
File Name	70 Upper Harbour Drive		
Pollution Date	18/9/98 Comment	Spill of 2000 litres of diesel while fill	

File Reference File Name		7-37-2787	7	
		Upper Harbour Drive		
Pollution	Date	30/5/02	Comment	Truckload of batteries on Upper Harbour Drive

File Reference		5-10-0900			
File Name		WCC sid	WCC side of Upper Harbour Drive		
Pollution	Date	31/1/01	Comment	Bright green discharge in water	

File Reference	5-11-4650		
File Name	33 Greenhithe Road		
Pollution Date	7/12/12 Comment	Wastewater – Sewer overflow	

File Reference	5-11-4457
File Name	75 Greenhithe Road
Pollution Date	19/10/12 Comment Wastewater – Sewer overflow

File Reference	5-11-3680				
File Name	Greenhithe Road				
Pollution Date	26/10/06 Comment	Hydraulic oil in stream from crushed truck			
	Contraction of the Address of the Ad				
File Reference	6-20-3007				
File Reference File Name	6-20-3007 Greenhithe Road				

File Reference File Name		5-11-1272		
		100 Bush Road		
Pollution Dat	te	13/12/00	Comment	Discharge carpet cleaning waste
Pollution Dat	te	31/7/99	Comment	Discharge wastewater to S/W

File Reference File Name		5-11-1366		·····
		169 Bush Road		
Pollution	Date	28/11/08	Comment	Transformer oil spill
Pollution	Date	4/07	Comment	Oil spill
Pollution	Date	26/9/06	Comment	11000 switch valve electrical unit exploded
Pollution	Date	16/1/06	Comment	Diesel spill from truck
Pollution	Date	18/12/05	Comment	Vehicle collision with transformer

Pollution	Date	24/6/05	Comment	Transformer oil going to stream
Pollution	Date	8/3/04	Comment	Drilling done and sediment is going into stormwater
Pollution	Date	10/2/04	Comment	Sediment running off site to stormwater
Pollution	Date	20/10/03	Comment	Transformers onsite, bunded area going to interceptor system

File Reference	5-11-28	60	
File Name	191 Bus	191 Bush Road	
Site Occupier Na	ne Clifton F	Rentals Ltd	
Pollution Date	24/8/02	Comment	Foam at small weir in Alexandra stream under bridge on Rosedale Road

File Reference	P270-04-18	
File Name	232 Bush Road	
Site Occupier Name	Accent Tools Ltd	
Pollution Date	31/8/02 Comment	Washing cars on yard

File Reference	5-11-0315		
File Name	Bush Road		
Site Occupier Name	NSCC De	pot	
Pollution Date	26/9/94	Comment	Washing rubbish trucks and street cleaners, water running overland and into creeks

Attachment B

1. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	File ref: 5-21-3869. Investgtn of Gull site that had
	a previous pollution incident where hydrocarbons
	were entering stormwater.
ACTIVITY ID:	20797
ACTIVITY STATUS:	Occurring
CONSENT STATUS:	Under Assessment
EASTING:	1744312
EXPIRY DATE:	Null
FILE REFERENCE:	5-21-3869
GRANTED DATE:	Null
LOC TYPE:	Area
NORTHING:	5915668
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	51723
PROCESSING OFFICER:	_John Earley
PROPERTY ADDRESS:	1-3 Forest Hill Road Henderson Waitakere
PURPOSE:	File ref: 5-21-3869. Investgtn of Gull site that had
	a previous pollution incident where hydrocarbons
	were entering stormwater.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Null
WORKS DESCRIPTION:	TPH, BTEX, PAH found in soils on site above
	relevant G/L's. Remed reqrd.

2. ACTIVITY DESCRIPTION:	To authorise the construction of Eight bores for
	groundwater monitoring purposes.
ACTIVITY ID:	22185
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Toll NZ Consolidated Ltd C/- Arrow International Limited
CONSENT NUMBER:	29767
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20050912
FILE REFERENCE:	C512-12-3378*
GRANTED DATE:	20040910
LOC TYPE:	Point
PROCESSING OFFICER:	Trent Sunich
PROPERTY ADDRESS:	
PURPOSE:	To authorise the construction of Eight bores for groundwater monitoring purposes.
REVIEW DATE:	Null
SITE DESCRIPTION:	North Auckland Railway & Metcalfe Road, Henderson, Waitakere City
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of Eight 50mm diameter bores to an approximate depth of 6m. Installation of class E, PVC casing.

3. ACTIVITY DESCRIPTION:	Discharge of contaminants associated with
	developing and operating an earth fill site.
ACTIVITY ID:	20342
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	NZ Railways Corp t/a Ontrack Infrastructure Ltd
CONSENT NUMBER:	31216
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20401231
FILE REFERENCE:	17432
GRANTED DATE:	20051125
LOC TYPE:	Point
PROCESSING OFFICER:	_Sarah Pinkerton
PROPERTY ADDRESS:	0 Pooks Road Ranui Waitakere
PURPOSE:	To authorise the ongoing diffuse discharge of
	contaminants to ground and groundwater in
	accordance with Section 15 of the Resource
	Management Act 1991.
REVIEW DATE:	20060430
SITE DESCRIPTION:	Null
SITE NAME:	NZRC - Ranui Fill site
WORKS DESCRIPTION:	Nuli

4. ACTIVITY DESCRIPTION:	To authorise the discharge of contaminats to air from the manufacture and processing of stock
	feed and farm supplies.
ACTIVITY ID:	20426
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Discharge To Air
CONSENT HOLDER:	Mainfeeds Limited
CONSENT NUMBER:	37270
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20141130
FILE REFERENCE:	17169
GRANTED DATE:	20131128
LOC TYPE:	Point
PROCESSING OFFICER:	Nicholas Browne
PROPERTY ADDRESS:	3-5 Red Hills Road Massey Waitakere
PURPOSE:	The discharge of contaminants into air from an
	animal feed mill and an 11.25 kW diesel fuelled
	boiler.
REVIEW DATE:	Null
SITE DESCRIPTION:	Stock feed manufacturer with diesel boiler
SITE NAME:	PCL - Mainfeeds Limited
WORKS DESCRIPTION:	Null

5. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	determine ALWP compliance
ACTIVITY ID:	20422
ACTIVITY STATUS:	Completed
CONSENT STATUS:	Assessment Completed
EASTING:	1742962
EXPIRY DATE:	Null

FILE REFERENCE:	5-10-2564
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5922224
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	51293
PROCESSING OFFICER:	_Guy Sowry
PROPERTY ADDRESS:	397 Don Buck Road Massey Waitakere
PURPOSE:	determine ALWP compliance
REVIEW DATE:	Null
SITE DESCR:	397 Don Buck Road Lot 1 DP 211902
SITE NAME:	Mobil Don Buck
WORKS DESCRIPTION:	ust replacement. site remaining as a service station.

6. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	To authorise the construction of four bores for
	contaminated site investigation.
ACTIVITY ID:	23522
ACTIVITY STATUS:	Drilled
CONSENT STATUS:	Assessment Completed
EASTING:	1743052
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4552*
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5922294
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52336
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	5 2 Triangle Road Massey Waitakere
PURPOSE:	To authorise the construction of four bores for
	contaminated site investigation.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Challenge Massey
WORKS DESCRIPTION:	The construction of four 50mm diameter bores to
	a maximum depth of 6m. Installation of PVC
	casing material to an approximate depth of 6m.

7. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	4891
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Pattle Delamore Partners Limited
CONSENT NUMBER:	14066
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19960810
FILE REFERENCE:	C512-12-1604*
GRANTED DATE:	19950810
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of three (3)

	piezometers for groundwater level and/or Chemistry investigations
REVIEW DATE:	Null
SITE DESCRIPTION:	Don Buck Road & Triangle Road, Massey West
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of three (3) 50mm dia. piezometers to approx 6m depth. Installation of PVC casing to approx 3m and PVC screen from approx. 3m to 6m if required.

8. ACTIVITY DESCRIPTION:	Change appl # 41419 - Condition 15 of LUC- 2012-1026 to amend working hours to include Sundays. Consent # 40896 - To discharge contaminants to land or water from land undergoing disturbance, as part of the proposed bulk earthworks to create suitable build
ACTIVITY ID:	21331
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Auckland Transport (for regional consents) *
CONSENT NUMBER:	40896
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20180430
FILE REFERENCE:	23392
GRANTED DATE:	20121204
LOC TYPE:	Point
PROCESSING OFFICER:	Samuel Woolley
PROPERTY ADDRESS:	17-19 23, 35-39 Fred Taylor Drive Massey,
	Waitakere
PURPOSE:	To undertake earthworks, vegetation removal and
	discharge of contaminants to land and water.
REVIEW DATE:	20130530
SITE DESCRIPTION:	Null
SITE NAME:	17-19,23,35-39 Fred Taylor Dr, Massey
WORKS DESCRIPTION:	Null

8. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Change appl # 41419 - Condition 15 of LUC-
	2012-1026 to amend working hours to include
	Sundays. Consent # 40896 - To discharge
	contaminants to land or water from land
	undergoing disturbance, as part of the proposed
	bulk earthworks to create suitable build
ACTIVITY ID:	21331
ACTIVITY STATUS:	Occurring
APPLICANT:	Null
APPLICATION:	41419
APPLICATION STATUS:	Withdrawn
EASTING:	1743354
FILE REFERENCE:	23392
LOC TYPE:	Point
LODGED DATE:	20130222
NORTHING:	5923760
PROCESSING OFFICER:	Helen Caley

PROPERTY ADDRESS:	17-19 23, 35-39 Fred Taylor Drive Massey,
	Waitakere
PURPOSE:	To undertake earthworks, vegetation removal and
	discharge of contaminants to land and water.
SITE DESCRIPTION:	Null
SITE NAME:	17-19,23,35-39 Fred Taylor Dr, Massey
WORKS DESCRIPTION:	Null

9. ACTIVITY DESCRIPTION:	Consent is sought to undertake approximately 41.1 hectares of earthworks, reclaimation/ filling in of W21 & W22 watercourse (as identified in the Totara Creek ICMP) and management & development of a contaminated site.
ACTIVITY ID:	20975
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Cannuck Holdings Limited
CONSENT NUMBER:	36294
CONSENT STATUS:	Superseded
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20141231
FILE REFERENCE:	20865
GRANTED DATE:	20091006
LOC TYPE:	Area
PROCESSING OFFICER:	Andrew Kalbarczyk
PROPERTY ADDRESS:	1 2 Kedgley Drive Massey Waitakere
PURPOSE:	To authorise approximately the discharge of contaminants to groundwater or surface water from a closed solid waste landfill at 1/2A Kedgley Drive, associated with a proposed new town centre, State Highway 16 and Kedgley Drive, (opposite Westgate Shopping
REVIEW DATE:	20131030
SITE DESCRIPTION:	Null
SITE NAME:	Massey North Town Centre Development
WORKS DESCRIPTION:	Null

9. ACTIVITY DESCRIPTION:	Consent is sought to undertake approximately 41.1 hectares of earthworks, reclaimation/ filling in of W21 & W22 watercourse (as identified in the Totara Creek ICMP) and management & development of a contaminated site.
ACTIVITY ID:	20975
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Westgate Town Centre Limited
CONSENT NUMBER:	38886
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20141230
FILE REFERENCE:	20865
GRANTED DATE:	20110105
LOC TYPE:	Area
PROCESSING OFFICER:	Graham Hooper
PROPERTY ADDRESS:	1 2 Kedgley Drive Massey Waitakere

PURPOSE:	To authorise approximately the discharge of contaminants to groundwater or surface water from a closed solid waste landfill at 1/2A Kedgley Drive, associated with a proposed new town centre, State Highway 16 and Kedgley Drive, (opposite Westgate Shop
REVIEW DATE:	20111031
SITE DESCRIPTION:	Null
SITE NAME:	Massey North Town Centre Development
WORKS DESCRIPTION:	Null

9. ACTIVITY DESCRIPTION:	Consent is sought to undertake approximately 41.1 hectares of earthworks, reclaimation/ filling in of W21 & W22 watercourse (as identified in the Totara Creek ICMP) and management & development of a contaminated site.
ACTIVITY ID:	21072
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Westgate Town Centre Limited
CONSENT NUMBER:	37114
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20441231
FILE REFERENCE:	20865
GRANTED DATE:	20091006
LOC TYPE:	Point
PROCESSING OFFICER:	Andrew Kalbarczyk
PROPERTY ADDRESS:	1 2 Kedgley Drive Massey Waitakere
PURPOSE:	To discharge of contaminants to land and water from land containing elevated levels of contaminants that is undergoing remediation, all associated with a proposed new town centre, State Highway 16 and Kedgley Drive, (opposite Westgate Shopping Centre), M
REVIEW DATE:	20111231
SITE DESCRIPTION:	Null
SITE NAME:	Massey North Town Centre Development
WORKS DESCRIPTION:	Null

10. ACTIVITY DESCRIPTION:	To authorise the construction of 2 bores for geotechnical investigation.
ACTIVITY ID:	23219
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	URS New Zealand Limited
CONSENT NUMBER:	36319
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20091001
FILE REFERENCE:	C512-12-4292*
GRANTED DATE:	20081002
LOC TYPE:	Point
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	13 Holmes Drive South Massey Waitakere

PURPOSE:	To authorise the construction of 2 bores for geotechnical investigation.
REVIEW DATE:	Null
SITE DESCRIPTION:	On the eastern and western side of the Auckland Kumeu Motorway. On the grass verges in front of 13 Holmes Drive Lot 36 DP 87398 and Neon & Boron Limited Lot 1 DP 20568. Both sites owned by NZ Transport Agency
SITE NAME:	URS New Zealand Limited
WORKS DESCRIPTION:	The construction of two 100mm diameter bores to a maximum depth of 15m. Installation of Grade D slotted PVC screening material to an approximate depth of 15m to the bottom of screen and 5m to top of screen. Proposed grouting to 5m.

11. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	The construction of two bores for Geological
	investigation, Geotechnical investigation &
	Groundwater investigation purposes.
ACTIVITY ID:	28758
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Assessment Completed
EASTING:	1745051.08
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-5015*
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5924442.81
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52841
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	74 Hobsonville Road West Harbour Waitakere
PURPOSE:	The construction of two bores for Geological
	investigation, Geotechnical investigation &
	Groundwater investigation purposes.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Auckland Council
WORKS DESCRIPTION:	The construction of two 100mm diameter bores to
	an approximate depth of 15m. Installation of steel
	socketed and screwed casing material to an
	approximate depth of 10m. Proposed grouting to
	full length.

12. ACTIVITY DESCRIPTION:	Approx 1.5 cmpd.
ACTIVITY ID:	4809
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	MR GD WALKER HJ MATHEWS JM MATHEWS PS WALKER
CONSENT NUMBER:	13844
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19960426
FILE REFERENCE:	C512-12-1566

GRANTED DATE:	19950426	
LOC TYPE:	Point	
PROCESSING OFFICER:	Gillian Crowcroft	
PROPERTY ADDRESS:		
PURPOSE:	Authorize the construction of a bore for the extraction of groundwater for stock and domestic supply	
REVIEW DATE:	Null	
SITE DESCRIPTION:	124 Hobsonville Road, Hobsonville	
SITE NAME:	Null	
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx 200m depth and installation of steel casing to approx. 65m.	

13. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	To authorise the construction of one bore for
	groundwater and contaminated site investigation.
ACTIVITY ID:	23447
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Assessment Completed
EASTING:	1747145
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4484
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5926265
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52267
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	12 Clark Road Hobsonville Waitakere
PURPOSE:	To authorise the construction of one bore for
	groundwater and contaminated site investigation.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	BP Oil New Zealand Limited
WORKS DESCRIPTION:	Work done by Fuel Installations. Contact Bryce
	Bacon - 021 948623

14. ACTIVITY DESCRIPTION:	Discharge of contaminants from air force base land
ACTIVITY ID:	20490
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Hobsonville Land Company Limited
CONSENT NUMBER:	32584
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20411231
FILE REFERENCE:	19067
GRANTED DATE:	20070813
LOC TYPE:	Point
PROCESSING OFFICER:	_John Earley
PROPERTY ADDRESS:	Buckley Avenue Hobsonville Waitakere
PURPOSE:	To authorise the ongoing diffuse discharge of contaminants to ground and groundwater in

	accordance with Section 15 of the Resource	
	Management Act 1991.	
REVIEW DATE:	20070930	
SITE DESCRIPTION:	Null	
SITE NAME:	NZDF - Sludge Bed Remediation	
WORKS DESCRIPTION:	Null	

15. ACTIVITY DESCRIPTION:	To authorise the construction of up to three bores	
	for monitoring purposes.	
ACTIVITY ID:	22018	
ACTIVITY STATUS:	Drilled	
ACTIVITY TYPE:	Bore	
CONSENT HOLDER:	New Zealand Defence Force - Environmental	
	Services	
CONSENT NUMBER:	28653	
CONSENT STATUS:	Expired	
DATE CREATE:	13/03/2014 7:18:58 p.m.	
EXPIRY DATE:	20041210	
FILE REFERENCE:	C512-12-3217*	
GRANTED DATE:	20031209	
LOC TYPE:	Point	
PROCESSING OFFICER:	_Amy Boulton	
PROPERTY ADDRESS:	0 Buckley Avenue Hobsonville Waitakere	
PURPOSE:	To authorise the construction of up to three bores	
	for monitoring purposes.	
REVIEW DATE:	Null	
SITE DESCRIPTION:	Null	
SITE NAME:	Nuli	
WORKS DESCRIPTION:	Construction of up to three bores to a depth of	
	approximately 5m. Installation of PVC casing to a	
	depth of approximately 2.6m.	

16. ACTIVITY DESCRIPTION:	New consent application
ACTIVITY ID:	21183
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Westgate Town Centre Limited
CONSENT NUMBER:	38794
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20151231
FILE REFERENCE:	20865
GRANTED DATE:	20110105
LOC TYPE:	Point
PROCESSING OFFICER:	Graham Hooper
PROPERTY ADDRESS:	9-11 State Highway 16 Massey Waitakere
PURPOSE:	To authorise approximately the discharge of contaminants to groundwater or surface water from a closed solid waste landfill at 1/2A Kedgley Drive, associated with a proposed new town centre, State Highway 16 and Kedgley Drive, (opposite Westgate Shop
REVIEW DATE:	20111031
SITE DESCRIPTION:	Null
SITE NAME:	Massey North

WORKS DESCRIPTION:	Null	

17. ACTIVITY DESCRIPTION:	To authorise the construction of 56 bores for a
	new motorway development.
ACTIVITY ID:	22461
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	NZ Transport Agency ****use 5781****
CONSENT NUMBER:	31774
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20061130
FILE REFERENCE:	C512-12-3611*
GRANTED DATE:	20051128
LOC TYPE:	Point
PROCESSING OFFICER:	_Daryl Henehan
PROPERTY ADDRESS:	23-25 Trig Road Whenuapai Waitakere
PURPOSE:	To authorise the construction of 56 bores for a
	new motorway development.
REVIEW DATE:	Null
SITE DESCRIPTION:	Nuli
SITE NAME:	Null
WORKS DESCRIPTION:	Null

18. ACTIVITY DESCRIPTION:	Null	
ACTIVITY ID:	5253	
ACTIVITY STATUS:	Drilled	
ACTIVITY TYPE:	Bore	
CONSENT HOLDER:	TUXFORD PROPERTIES LTD	
CONSENT NUMBER:	15154	
CONSENT STATUS:	Expired	
DATE CREATE:	13/03/2014 7:18:58 p.m.	
EXPIRY DATE:	19970506	
FILE REFERENCE:	C512-12-1766	
GRANTED DATE:	19960506	
LOC TYPE:	Point	
PROCESSING OFFICER:	_Gillian Crowcroft	
PROPERTY ADDRESS:		
PURPOSE:	Authorize the construction of a bore for the	
	extraction of groundwater for stock and domestic	
	supply	
REVIEW DATE:	Null	
SITE DESCRIPTION:	100 Hobsonville Road, Hobsonville	
SITE NAME:	Null	
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx.	
	150m depth and installation of PVC casing to	
	approx. 50m.	

19. ACTIVITY DESCRIPTION: (duplicate of 12)	Approx 1.5 cmpd.
ACTIVITY ID:	4809
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	MR GD WALKER HJ MATHEWS JM MATHEWS PS WALKER
CONSENT NUMBER:	13844
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19960426
FILE REFERENCE:	C512-12-1566
GRANTED DATE:	19950426
LOC TYPE:	Point
PROCESSING OFFICER:	Gillian Crowcroft
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of a bore for the
	extraction of groundwater for stock and domestic
	supply
REVIEW DATE:	Null
SITE DESCRIPTION:	124 Hobsonville Road, Hobsonville
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx 200m depth and installation of steel casing to approx. 65m.

20. ACTIVITY DESCRIPTION:	Discharge of contaminants associated with
	earthworks involved with the development of a
	proposed retirement village complex.
ACTIVITY ID:	21295
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Summerset Villages (Hobsonville) Limited
CONSENT NUMBER:	40426
CONSENT STATUS:	Issued
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20231101
FILE REFERENCE:	23091
GRANTED DATE:	20131101
LOC TYPE:	Point
PROCESSING OFFICER:	Helen Caley
PROPERTY ADDRESS:	22-24 Upper Harbour Drive Hobsonville
	Waitakere
PURPOSE:	To discharge contaminants associated with the
	development and operation of a retirement
	village.
REVIEW DATE:	20141101
SITE DESCRIPTION:	Null
SITE NAME:	1-2 Squadron Drive, Hobsonville
WORKS DESCRIPTION:	Null

21. ACTIVITY DESCRIPTION:	Stock and domestic and to supply a restaurant.	
	Will require a Permitted Activity.	
ACTIVITY ID:	21079	
ACTIVITY STATUS:	Proposed	
ACTIVITY TYPE:	Bore	
CONSENT HOLDER:	MICHAEL RONALD EVANS & ANN KATHLEEN EVANS	
CONSENT NUMBER:	23230	
CONSENT STATUS:	Expired	
DATE CREATE:	13/03/2014 7:18:58 p.m.	
EXPIRY DATE:	20020201	
FILE REFERENCE:	C512-12-2485	
GRANTED DATE:	20010201	
LOC TYPE:	Point	
PROCESSING OFFICER:	_Gillian Crowcroft	
PROPERTY ADDRESS:	22-24 Upper Harbour Drive Hobsonville Waitakere	
PURPOSE:	Authorise the construction of a bore for stock and domestic supply and to supply a restaurant.	
REVIEW DATE:	Null	
SITE DESCRIPTION:	5 Upper Harbour Drive, Hobsonville.	
SITE NAME:	MR & AK Evans	
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a	
	depth of approximately 200m and installation of PVC casing to approximately 65m depth.	

22. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	To discharge contaminants to land or water from land undergoing disturbance as part of the proposal to create development lots to facilitate future development of the Hobsonville Sunderland Precinct Buckley Avenue East.
ACTIVITY ID:	21441
ACTIVITY STATUS:	Occurring
APPLICANT:	Hobsonville Land Company Limited
APPLICATION:	42393
APPLICATION STATUS:	Processing
EASTING:	1748353
FILE REFERENCE:	24188
LOC TYPE:	Point
LODGED DATE:	20131118
NORTHING:	5927369
PROCESSING OFFICER:	Helen Caley
PROPERTY ADDRESS:	Buckley Avenue Hobsonville Waitakere
PURPOSE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Hobsonville Sunderland Precinct Buckley Ave East
WORKS DESCRIPTION:	Null

23. ACTIVITY DESCRIPTION:	Authorise the construction of a bore for the
	extraction of groundwater for domestic supply.
ACTIVITY ID:	20150
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	MR K MAREVICH
CONSENT NUMBER:	21320
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19990408
FILE REFERENCE:	C512-12-2172
GRANTED DATE:	19980407
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	74 Upper Harbour Drive Greenhithe North Shore
PURPOSE:	Authorise the construction of a bore for the
	extraction of groundwater for domestic supply.
REVIEW DATE:	Null
SITE DESCRIPTION:	74 Upper Harbour Drive, Greenhithe
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a
	depth of approximately 200m and installation of
	PVC casing to approximately 60m depth.

24. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21855
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Kerrie Cleverdon Orton, John William Orton &
	Anthony Charles Horrocks
CONSENT NUMBER:	27736
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20040312
FILE REFERENCE:	C512-12-3069
GRANTED DATE:	20030311
LOC TYPE:	Point
PROCESSING OFFICER:	_Michelle Ip
PROPERTY ADDRESS:	124 Upper Harbour Drive Albany North Shore
PURPOSE:	Authorise the construction of a bore for domestic
	supply.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a
	depth of approximately 200m. Installation of PVC
	casing to a depth of approximately 70m.

25. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21191
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	MARK GORDON HILLIS GAYLE KATHLEEN
	HILLIS MARY ELLEN COLE
CONSENT NUMBER:	23881
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20010329
FILE REFERENCE:	C512-12-2555
GRANTED DATE:	20000328
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	175 Upper Harbour Drive Greenhithe North
	Shore
PURPOSE:	Authorise the construction of a bore for the
	extraction of groundwater for domestic supply
REVIEW DATE:	Null
SITE DESCRIPTION:	175 Upper Harbour Drive, Greenhithe
SITE NAME:	MG & GK Hollis
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a
	depth of approximately 200m and installation of
	PVC casing to adepth of approximately 60m.

26. ACTIVITY DESCRIPTION:	Construction of a 100mm dia. bore to approx.
and the second of the second of the	150m depth and installation of P.V.C. casing to
	approx. 60m.
ACTIVITY ID:	503
ACTIVITY STATUS:	Drilled
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	JWYATT
CONSENT NUMBER:	10675
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	19910122
FILE REFERENCE:	14/17/437
GRANTED DATE:	19900118
LOC TYPE:	Point
PROCESSING OFFICER:	Andrew Millar
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of a bore for the
	extraction of groundwater for stock and domestic
	supply.
REVIEW DATE:	Null
SITE DESCRIPTION:	260 Upper Harbour Drive,, Greenhithe,
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx.
	150m depth and installation of P.V.C. casing to
	approx. 60m.

27. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21375
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	NZ Transport Agency Attn: Tammy Muharemi
CONSENT NUMBER:	25014
CONSENT STATUS:	Expired
DATE CREATE:	13/03/2014 7:18:58 p.m.
EXPIRY DATE:	20020319
FILE REFERENCE:	C512-12-2702*
GRANTED DATE:	20010319
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	Upper Harbour Motorway Auckland
PURPOSE:	Authorise the construction of twenty six (26)
	bores for geotechnical investigation.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Upper Harbour Corridor
WORKS DESCRIPTION:	Construction of twenty six (26) 100mm diameter
	bores to a depth of approximately 25m.
	Installation of PVC casing.

28. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	The construction of three 100mm diameter bores
	to a maximum depth of 20m.
ACTIVITY ID:	27946
ACTIVITY STATUS:	Proposed
CONSENT STATUS:	Assessment Completed
EASTING:	1752320.96
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4816*
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5930368.16
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52624
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	
PURPOSE:	The construction of three 100mm diameter bores
	to a maximum depth of 20m.
REVIEW DATE:	Null
SITE DESCR:	Three locations along Albany Highway road
	reserve between Upper Harbour Drive and
	Sunset Road.
SITE NAME:	Albany Highway Widening
WORKS DESCRIPTION:	Null

29. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Caltex Schnapper Rock 178 Old Albany
	Highway
ACTIVITY ID:	20311
ACTIVITY STATUS:	Completed
CONSENT STATUS:	Assessment Completed
EASTING:	1751932
EXPIRY DATE:	Null
FILE REFERENCE:	5-01-3451
GRANTED DATE:	Null
LOC TYPE:	Area
NORTHING:	5930776
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	51104
PROCESSING OFFICER:	_Sarah Pinkerton
PROPERTY ADDRESS:	
PURPOSE:	complete tank pull
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Caltex Schnapper Rock
WORKS DESCRIPTION:	PO peter KAvanagh

30. ACTIVITY:	Contaminated Site Discharge
ACTIVITY DESCRIPTION:	Proposed res dev't on site with fill from road
	scrapings. Elevated PAH.
ACTIVITY ID:	20856
ACTIVITY STATUS:	Completed
CONSENT STATUS:	Assessment Completed
EASTING:	1751661
EXPIRY DATE:	Null
FILE REFERENCE:	5-11-3938
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5930876
PERMITTED:	Contaminated Site Discharge
PERMITTED ACTIVITY TYPE :	51793
PROCESSING OFFICER:	Andrew Kalbarczyk
PROPERTY ADDRESS:	12 Schnapper Rock Road Schnapper Rock North Shore
PURPOSE:	File ref: 5-11-3938. Proposed res dev't on site with fill from road scrapings. Elevated PAH.
REVIEW DATE:	Null
SITE DESCR:	Proposed res dev't on site with fill from road
	scrapings. Elevated PAH.
SITE NAME:	12 Schnapper Rock Rd
WORKS DESCRIPTION:	Removal of 40-60 cubic metres of soil. Site validation.

31. ACTIVITY DESCRIPTION:	An application for a contaminated site discharge
	consent associated with the proposed
	development of the site into a resource recovery
	facility
ACTIVITY ID:	21190
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Contaminated Site Discharge
CONSENT HOLDER:	Atlas Concrete Limited
CONSENT NUMBER:	39060
CONSENT STATUS:	Surrendered
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20160430
FILE REFERENCE:	22398
GRANTED DATE:	20110523
LOC TYPE:	Point
PROCESSING OFFICER:	Andrew Kalbarczyk
PROPERTY ADDRESS:	8 Paul Matthews Road Rosedale North Shore
PURPOSE:	To discharge contaminants to land or water
	associated with land disturbance during the
	proposed site development works. This is for a
	short term discharge consent for the initial site
	development works for a resource recovery
	facility.
REVIEW DATE:	20120531
SITE DESCRIPTION:	Null
SITE NAME:	8 Paul Matthews Road, Rosedale
WORKS DESCRIPTION:	See also Air: 38988 (file no 22352), Stormwater
	39058 file no 22397) & ITP: 39059 (file no
	22397).

31. ACTIVITY DESCRIPTION:	To discharge contaminants onto or into land or water from an industrial trade process associated with the crushing of recycled concrete(including
	other ancillary processes).
ACTIVITY ID:	230
ACTIVITY STATUS:	Occurring
ACTIVITY TYPE:	Industrial or Trade Process
CONSENT HOLDER:	Atlas Concrete Limited
CONSENT NUMBER:	39059
CONSENT STATUS:	Issued
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20460513
FILE REFERENCE:	22397
GRANTED DATE:	20110516
LOC TYPE:	Point
PROCESSING OFFICER:	Jacqueline Anthony
PROPERTY ADDRESS:	8 Paul Matthews Road Rosedale North Shore
PURPOSE:	To discharge contaminants onto or into land or water from an industrial trade process associated with the crushing of recycled concrete(including other ancillary processes).
REVIEW DATE:	20120630
SITE DESCRIPTION:	Null
SITE NAME:	8 Paul Matthews Road, Rosedale
WORKS DESCRIPTION:	See also Air: 38988 (file no. 22398), Stormwater 39058 (file no 22397) & Contaminated Land

discharge 39060 (file no 22352).	

31. ACTIVITY DESCRIPTION:	To discharge contaminants to air from activities which are associated with the crushing of
	recycled concrete and other ancillary processes
ACTIVITY ID:	20482
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Discharge To Air
CONSENT HOLDER:	Atlas Concrete Limited
CONSENT NUMBER:	38988
CONSENT STATUS:	Issued
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20260513
FILE REFERENCE:	22352
GRANTED DATE:	20110516
LOC TYPE:	Point
PROCESSING OFFICER:	Mike Harvey
PROPERTY ADDRESS:	8 Paul Matthews Road Rosedale North Shore
PURPOSE:	To discharge contaminants to air from activities
	which are associated with the crushing of
	recycled concrete and other ancillary processes
REVIEW DATE:	20120630
SITE DESCRIPTION:	Concrete crushing facility
SITE NAME:	8 Paul Matthews Road
WORKS DESCRIPTION:	See also ITP: 39059 (file no 22397), Stormwater
	39058 (file no 22397) & Contaminated Land
	discharge 39060 (file no. 22398).

32. ACTIVITY DESCRIPTION:	Discharge of contaminants to land from an
	industrial trade process associated with
	commercial offices and storage depot for an
	electricity servicing operation.
ACTIVITY ID:	99
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Industrial or Trade Process
CONSENT HOLDER:	Siemens (NZ) Limited
CONSENT NUMBER:	32849
CONSENT STATUS:	Surrendered
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20271231
FILE REFERENCE:	2343
GRANTED DATE:	20071108
LOC TYPE:	Point
PROCESSING OFFICER:	Chris Bailey
PROPERTY ADDRESS:	169 Bush Road Rosedale North Shore
PURPOSE:	To authorise the discharge of contaminants onto
	or into land from an industrial or trade process in
	accordance with Section 15 of the Resource
	Management Act 1991.
REVIEW DATE:	Null
SITE DESCRIPTION:	Administration and servicing of electrical and gas
	utilities
SITE NAME:	Siemens Energy Services
WORKS DESCRIPTION:	Works Catchment area- impervious Catchment
	area- pervious Design Standard

Triple Interceptor Tank (existing) 0.1134 ha
Compliant with ARC TP10 (1992) oil/water
separation Mixed media (sand and peat) filter
0.2650 ha Compliant with ARC TP10 (July 2003)

33. ACTIVITY:	Industrial or Trade Process
ACTIVITY DESCRIPTION:	Discharge of contaminants to land from an
	industrial trade process associated with
	commercial offices and storage depot for an
	electricity servicing operation.
ACTIVITY ID:	99
ACTIVITY STATUS:	Proposed
APPLICANT:	Null
APPLICATION:	32646
APPLICATION STATUS:	Not Accepted For Pro
EASTING:	1752370
FILE REFERENCE:	2343
LOC TYPE:	Point
LODGED DATE:	20060526
NORTHING:	5931780
PROCESSING OFFICER:	Null
PROPERTY ADDRESS:	169 Bush Road Rosedale North Shore
PURPOSE:	Null
SITE DESCRIPTION:	Administration and servicing of electrical and gas
	utilities
SITE NAME:	Siemens Energy Services
WORKS DESCRIPTION:	Null

34. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	21705
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	North Shore City Council
CONSENT NUMBER:	26744
CONSENT STATUS:	Expired
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	20030526
FILE REFERENCE:	C512-12-2926
GRANTED DATE:	20020524
LOC TYPE:	Point
PROCESSING OFFICER:	Roger Bannister
PROPERTY ADDRESS:	0066 BUSH RD NORTH HARBOUR INDUSTRIAL
PURPOSE:	Authorise the construction of a bore for groundwater monitoring purposes.
REVIEW DATE:	Null
SITE DESCRIPTION:	Null
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm diameter bore to a depth of approximately 10m.

35. ACTIVITY DESCRIPTION:	Null
ACTIVITY ID:	5695
ACTIVITY STATUS:	Proposed
ACTIVITY TYPE:	Bore
CONSENT HOLDER:	Maunsell Limited
CONSENT NUMBER:	16024
CONSENT STATUS:	Expired
DATE CREATE:	14/03/2014 7:22:39 p.m.
EXPIRY DATE:	19980320
FILE REFERENCE:	C512-12-1957
GRANTED DATE:	19970320
LOC TYPE:	Point
PROCESSING OFFICER:	_Gillian Crowcroft
PROPERTY ADDRESS:	
PURPOSE:	Authorize the construction of a bore for
	groundwater level and/or Chemistry investigations
REVIEW DATE:	Null
SITE DESCRIPTION:	SPENCER RD, ALBANY,
SITE NAME:	Null
WORKS DESCRIPTION:	Construction of a 100mm dia. bore to approx 20m depth. Installation of PVC casing to approx
and the second sec	15m and PVC screen from approx. 15m to 20m
	if required.

36. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	The construction of a 100mm diameter bore to an
and subject to be a subject to the subject to be a subject to	approximate depth of 16.95m for geotechnical
	investigation purposes.
ACTIVITY ID:	27905
ACTIVITY STATUS:	Drilled
CONSENT STATUS:	Assessment Completed
EASTING:	1753072
EXPIRY DATE:	Null
FILE REFERENCE:	C512-12-4812
GRANTED DATE:	Null
LOC TYPE:	Point
NORTHING:	5933811
PERMITTED:	Bore
PERMITTED ACTIVITY TYPE :	52621
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	69 Corinthian Drive Albany North Shore
PURPOSE:	The construction of a 100mm diameter bore to an
	approximate depth of 16.95m.
REVIEW DATE:	Null
SITE DESCR:	Null
SITE NAME:	Corinthian Drive, Albany.
WORKS DESCRIPTION:	Null

36. ACTIVITY:	Bore
ACTIVITY DESCRIPTION:	The construction of a 100mm diameter bore to an
	approximate depth of 16.95m for geotechnical
	investigation purposes.
ACTIVITY ID:	27905
ACTIVITY STATUS:	Drilled
APPLICANT:	Null
APPLICATION:	39146
APPLICATION STATUS:	Invalid
EASTING:	1753072
FILE REFERENCE:	C512-12-4812
LOC TYPE:	Point
LODGED DATE:	20110411
NORTHING:	5933811
PROCESSING OFFICER:	Reginald Samuel
PROPERTY ADDRESS:	69 Corinthian Drive Albany North Shore
PURPOSE:	To authorise the construction of a bore for water
	level monitoring and geotechinical purposes. no
	abstaction intended.
SITE DESCRIPTION:	Null
SITE NAME:	Corinthian Drive, Albany.
WORKS DESCRIPTION:	the construction of a 100mm diameter bore to an
	approximate depth of 16.95m

APPENDIX D SAMPLING METHODOLOGY: SOIL, SEDIMENT & GROUNDWATER

Sampling Methodology: Ground Contamination

By: Walter Starke, Jacobs SKM

Date: 5th May 2014

Revision: 1- final issue

1) Introduction

Watercare Services Ltd (Watercare) is the primary distributer of potable water in the Auckland Region. Watercare require a second pipeline, the North Harbour No. 2 Watermain, to accommodate growth and development in the north and western areas of the Auckland region. It is also required in order to provide redundancy in the Watercare network supplying Waitakere, North Shore, the Whangaparoa Peninsula and Orewa.

The North Harbour No. 2 Watermain will extend between the future Titirangi No. 3 (Manuka Road) Reservoir at the Huia Water Treatment Plant (WTP) and the Albany Reservoir.

In summary the North Harbour No. 2 Watermain Project incorporates:

- a) a pipeline length of approximately 33 km;
- b) a nominal pipeline internal diameter of 1200 mm between Manuka Road Reservoir and the Swanson Watermain (a pipe length of approximately 10-11 km);
- c) a nominal pipeline internal diameter of 910 mm between the Swanson Watermain and the Albany Reservoirs (a pipe length of approximately 22 km);
- d) Associated works including pipe bridges, coastal crossings, chambers and operational features such as air, line and scour valves.

To assess if ground contamination would adversely affect the proposed pipeline Watercare engaged Jacobs SKM to carry out an initial fatal flaw assessment in early 2014. This work is presented in the report titled *Initial Fatal Flaw Assessment- Soil & Groundwater Contamination*, revision 3, dated 3rd April 2014 (Jacobs SKM, 2014).

One of the recommendations of the report was to prepare a Sampling & Analysis Plan (SAP) to obtain site specific soil and groundwater quality data for the preferred route and to obtain this data, where practical, during future geotechnical and hydrogeological fieldwork for the proposed pipeline.

The first stage of the geotechnical and hydrogeological fieldwork is presented in the URS New Zealand Ltd (URS) report titled *"Specification, North Harbour No. 2 Watermain, Advanced Works Greenhithe and Stream Crossing, Geotechnical Investigation Updated Scope"*, ref. 42073300/S001/B, status- final, dated 27th March 2014. This report contained the proposed geotechnical investigation locations.

On 15th April 2014 Jacobs SKM prepared a Draft Sampling & Analysis Plan (SAP), with respect to soil and groundwater contamination, based on the geotechnical specification by URS. The draft SAP provided proposed soil, sediment and groundwater sample locations and depths, and the proposed laboratory testing regime.

On 30th April URS, Watercare and Tonkin & Taylor Ltd (T&T) provided comments on the draft SAP. Their comments have been included in the attached updated version of the SAP, revision 1.

This document/memorandum provides the sampling methodology for the attached SAP, revision 1.

It is assumed that the reader of this document is familiar with the above-mentioned reports.

2) General: Soil, Sediment and Groundwater

It is anticipated that all soil, sediment and groundwater samples will be taken during the geotechnical and hydrogeological fieldwork for the Advanced Works Greenhithe and Stream Crossings.

3) Soil Sampling

Soil samples will be collected from the strata and/or depth ranges:

- a) The near surface soils, described as 0.0-0.2 metres below ground level (m bgl).
- b) At a change in strata/geology.
- c) Where there is visual or olfactory evidence of ground contamination
- d) At the groundwater table.

The attached SAP, rev. 1, has allowed for soil samples to be taken from the following three depth ranges: 0.0-0.2 m, 0.9-1.1m and 1.9-2.1 m. These are indicative depths only and items a) to d) above will take precedence of these three depth ranges.

The following items shall be recorded and/or undertaken during the soil sampling fieldwork:

- e) The fieldstaff taking the soil samples shall maintain a daily site log, including, as a minimum, the date, person carrying out the work, weather conditions and that the actual sample locations match those presented on the SAP. If the sample locations have changed Jacobs-SKM shall be notified immediately (for example, via mobile telephone) and the newly agreed locations shall be clearly reported by the fieldstaff in the daily site logs.
- f) All soil samples shall be labelled, as a minimum, with a unique sample number part referencing the borehole number, the depth the sample was collected at, date and time of sampling, project number and name of initial of person sampling.
- g) All soil samples shall be placed in laboratory cleaned sample containers/jars.
- h) Avoid cross contamination between sample locations by, for example, using stainless steel tools to obtain the sample, decontaminate the sampling tools using Decon 90 or a similar industrial type material, use fresh and disposable latex glove when taking each sample and ensuring the drilling rig is decontaminated appropriately.
- i) In the field place all sample containers in a cooled chilly-bin or similar insulated container(s) and be couriered to the laboratory the same day. If samples are to be kept overnight they shall be refrigerated at 4C and couriered to the chemical testing laboratory the following day.
- j) The chemical testing laboratory shall be one that is certified by International Accreditation New Zealand (IANZ).
- k) A field replicate sample shall be taken every ten samples.
- I) The fieldstaff shall report the absence or presence of visual and/or olfactory evidence of contamination in the sample.

4) Sediment Sampling

The sediment sample locations shall be obtained from the locations identified on the attached SAP, rev. 1.

Sediment samples will be collected from the following depth ranges:

- a) From 0.0-0.1 m depth.
- b) From 0.9-1.0 m depth.
- c) From 1.9-2.0 m depth.
- d) If the sediment depth is less than 0.9 m than the sediment sample shall be taken from the lowest 100 mm of sediment. For example, if the sediment depth is 800 mm below ground level the sediment sample shall be taken from 0.7-0.8 m depth.
- e) If the sediment depth is less than 0.5 m, the only sediment sample shall be from 0.0-0.1 m.
- f) The same sediment sampling philosophy applies for sediment depths greater than 1.0 m.

All samples will be obtained by a sediment sampler such as a piston push probe sampler. The surface sample will be collected from the top of the core. The items to be recorded and/or undertaken during the sediment sampling fieldwork shall be the same as that for the soil sampling fieldwork described above.

5) Groundwater: Boreholes & Monitoring Well Installation

The boreholes and monitoring well installation shall be constructed in accordance with New Zealand Standard (NZS) 4411; 2001, titled *"Environmental Standard for Drilling of Soil and Rock"*.

The boreholes shall be logged in accordance with the document titled *"Field Description of Soil and Rock, Guideline for the Field Classification and Description of Soil and Rock for Engineering Purposes"* published by the New Zealand Geotechnical Society (NZGS) in 2005.

The drilling rig shall be appropriately cleaned prior to the drilling works starting, between borehole locations and when there is visual and/or olfactory evidence of ground contamination during drilling. All cleaning procedures shall be recorded in the daily field-log by the fieldstaff.

The monitoring well installation shall be as described in Jacobs-SKM hydrogeological part of the project.

For those piezometers scheduled for groundwater sampling (see item 6 below) the minimum piezometer diameter shall be a minimum of 32 mm and the screen depth shall be at least 1 m above the highest groundwater table level and be 1 m below the lowest groundwater table level.

All monitoring wells shall be 'developed' by removing the sediment within the well (as far as is reasonably practical), for example, using compressed air to clear the well or suspended sediments located within the well. This work shall be carried out prior to moving to the next borehole location.

6) Groundwater: Sampling

The groundwater samples shall be collected from the locations identified on the attached SAP, rev. 1.

The groundwater samples shall be collected in accordance with good guidance practice such as the AS/NZS 5667.11:1998 document titled *"Water quality—Sampling. Part 11: Guidance on Sampling of Groundwaters."*

Groundwater samples shall be collected as follows:

- a) Record the condition of the well/piezo head.
- b) After removing the cap from the well head record the presence or absence of odours emanating from the well.
- c) Measure depth the groundwater table and depth to the base of the monitoring well and record.
- d) Calibrate the portable field testing parameter kit which must contain, as a minimum, pH-Value, Electrical Conductivity and Temperature.
- e) Collect groundwater samples using low flow portable peristaltic pumps.
- f) Clean sampling equipment using distilled water with Decon 90 or similar and/or use dedicated tubing for the groundwater sampling.
- g) Purge a minimum of three well volumes prior to sampling.
- h) During purging record the field parameters (see item d above).
- i) Continue purging until field parameters have stabilised: pH-Value \pm 0.1, Electrical Conductivity \pm 3% and temperature \pm 0.2%.
- j) During purging record the groundwater table depth in the well.
- k) Label groundwater sample bottles appropriately (see Section 3-f above).
- I) Collect groundwater sample for which field filtering is not required and place into appropriate sample bottle.
- m) Field filter (0.45 μm) groundwater sample for dissolved metals using laboratory supplied filter kit and place into appropriate sample bottle.
- n) Record the depth to the groundwater table immediately after the groundwater samples have been taken.
- All groundwater samples shall be labelled, as a minimum, with a unique sample location number part referencing the borehole number, date and time of sampling, project number and name of initial of person sampling
- p) The additional item to be recorded and/or undertaken during the groundwater sampling fieldwork shall be the same as that for the soil sampling fieldwork described above.

7) Chain of Custody /Request for Analysis Form

A Chain of Custody/Request for Analysis Form shall be maintained for all soil, sediment and groundwater samples. An example of a suitable form is the standard Chain of Custody/Request for Analysis form from R J Hill Laboratories in Hamilton.

8) Laboratory Testing

All laboratory testing shall be carried out using an IANZ certified laboratory such as R J Hill Laboratories in Hamilton.

North Harbour No. 2 Watermain

The proposed laboratory testing regime is indicated on the attached Excel Spreadsheet. To clarify: for sediment laboratory testing two types of 'metal' testing has been scheduled, see attached Excel Spreadsheet:

- a) Metals (1): this testing is scheduled to provide an assessment should the sediment be removed off-site to an appropriate landfill disposal site.
- b) Ecology Metals (7): this testing is scheduled to provide an ecological assessment of the sediment, in particular the Environmental Response Criteria (ERC), in accordance with the document Auckland Regional Council Technical Publication (TP) No. 168, August 2004. For example, the ERC for heavy metals are assessed against the test results of a weak acid digestion of the mud fraction (<63µm) or a strong acid digestion of the total sediment fraction (<500µm). Testing should be carried out on the uppermost (surface) 2 cm of sediment only, as per TP168.</p>

The detection limits for the proposed laboratory testing shall be, as a minimum, those presented in Table 1 below. These detection limits are broadly those provided by R J Hill Laboratories Ltd.

9) Quality Control

All soil, sediment and groundwater samples shall be obtained in accordance with good practices for contaminated land investigations. Key items are as follows:

- a) Decontaminate all sampling equipment between sampling locations.
- b) Obtain one replicate sample for every ten samples taken.
- c) Only use laboratory cleaned sample jars/containers.
- d) Label each sample so that it can be uniquely identified.
- e) Record all sampling and fieldwork undertaken, including any deviations from this Sampling Methodology document.
- f) Use appropriate Chain of Custody/Request for Analysis Forms.
- g) Use an IANZ certified laboratory for the contaminant testing.
- All soil, sediment and groundwater samples that are not scheduled for laboratory testing shall be sent to Watercare Services Ltd within 1 week of the samples being taken. It is envisaged that the samples will be kept for a period of six months after the fieldwork has been completed.

JACOBS^{SKM}

Parameter	Soil & Sediment (mg/kg)	Sediment (mg/kg), ARC extraction	Groundwater (g/m3)
Arsenic	2	1	0.001
Cadmium	0.1	0.05	0.00005
Chromium	2	1	0.0005
Copper	2	1	0.0005
Lead	0.4	0.2	0.0001
Nickel	2	1	0.0005
Zinc	4	2	0.001
Mercury	0.1	0.05	0.00008
TPH:		n/a	
C7C9	8		0.1
C10-C14	20		0.2
C15-C36	30		0.4
C7-C36 (total)	60		0.7
РаН	0.03-0.1	n/a	0.0001-0.0005
OCP	0.01	n/a	No test required
ТВТ	0.05	n/a	No test required
тос	0.05 gram/100 gram	n/a	No test required

Notes:

a) n/a = not applicable

10) Abbreviations

AC:	Auckland Council
ARC:	Auckland Regional Council (now part of AC)
AS:	Australian Standard
EC:	Electrical Conductivity
g/m ³ :	grams per cubic metre = parts per billion = ppb
IANZ:	International Accreditation New Zealand
Jacobs SKM:	SKM became part of Jacobs in December 2013.
km:	kilometre.
m:	metre
mg/kg:	milligram per kilogram = parts per million = ppm
μm:	micrometre (= 1×10^{-6} m)
NZGS:	New Zealand Geotechnical Society
NZS:	New Zealand Standard
μm:	micro-metre
OCP:	Organochlorine Pesticides
PaH:	Polycyclic Aromatic Hydrocarbons
SAP:	Sampling & Analysis Plan
SKM:	Sinclair Knight Merz Ltd (now part of Jacobs)
TBT:	Tributyl tin
TOC:	Total Organic Carbon
TP:	Technical Publication
TPH:	Total Petroleum Hydrocarbons
T&T:	Tonkin & Taylor Ltd
URS:	URS New Zealand Ltd

Watercare: Watercare Services Ltd

WMNH2: North Harbour No. 2 Watermain

WTP: Water Treatment Plant

Title: Proposed Soil, Sediment & Groundwater Sampling & Analysis Programme, Revision 1- Final

By: Walter Starke (Jacobs SKM)

Date: 05 May 2014

Note: Locations of boreholes presented in Specification North Harbour No. 2 Watermain, Advanced Works Greenhithe & Stream Crossings- Geotechnical

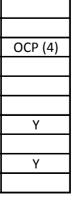
Investigation Updated Scope- DRAFT, prepared by URS for Watercare, dated 27 March 2014

Note: The Proposed Soil, Sediment and Groundwater Sampling & Analysis Programme. Rev. 1- Final should not be read in isolation but together with the Jacobs-SKM Sampling Methodology- rev. 1- final, for Watercare Services Ltd, Dated 05 May 2014.

1. Soil, Sediment & Groundwater Sampling Programme

Item	Machine	Hand Auger	Hand Auger	Piezo	Gw sample?		Soil Samples		Sedi	ment Samples	
	Boreholes	Boreholes	Boreholes				Depth (m bgl)		De	epth (m bgl)	
			+ Scalas						Note: it is possible t	hat the depth of see	diment
									less than 1.0 m at th	e proposed sedime	nt sam
A- Adva	anced Wor	ks							locations and ther	efore the depths be	low ar
									indicative only		
1	BH-201			Y	Y	0.0-0.2	0.9-1.1	1.9-2.9			
2	BH-202			Y	-	0.0-0.2	0.9-1.1	1.9-2.9			
3	BH-203										
4	BH-204			Y	-	0.0-0.2	0.9-1.1	1.9-2.9			
5		HA-201				0.0-0.2	0.9-1.1	1.9-2.9			
6		HA-202				0.0-0.2	0.9-1.1	1.9-2.9			
7			HAS-203						0.0-0.1	0.9-1.0	1.9
8			HAS-204						0.0-0.1	0.9-1.0	1.
9			HAS-205						0.0-0.1	0.9-1.0	1.
10			HAS-206						0.0-0.1	0.9-1.0	1.9
11			HAS-206a						0.0-0.1	0.9-1.0	1.
12			HAS-207						0.0-0.1	0.9-1.0	1.
13			HAS-207a						0.0-0.1	0.9-1.0	1.
14			HAS-208						0.0-0.1	0.9-1.0	1.
15			HAS-208a						0.0-0.1	0.9-1.0	1.
16			HAS-209						0.0-0.1	0.9-1.0	1.
17			HAS-209a						0.0-0.1	0.9-1.0	1.
18			HAS-210						0.0-0.1	0.9-1.0	1.
19			HAS-210a						0.0-0.1	0.9-1.0	1.
20			HAS-211						0.0-0.1	0.9-1.0	1.9
21			HAS-211a						0.0-0.1	0.9-1.0	1.
22			HAS-212						0.0-0.1	0.9-1.0	1.
23			HAS-212a						0.0-0.1	0.9-1.0	1.9
24			HAS-213						0.0-0.1	0.9-1.0	1.
25			HAS-213a						0.0-0.1	0.9-1.0	1.
26			HAS-214						0.0-0.1	0.9-1.0	1.
27			HAS-214a						0.0-0.1	0.9-1.0	1.
28			HAS-215						0.0-0.1	0.9-1.0	1.
29			HAS-215a						0.0-0.1	0.9-1.0	1.
30			HAS-216						0.0-0.1	0.9-1.0	1.
31			HAS-216a						0.0-0.1	0.9-1.0	1.
32			HAS-217						0.0-0.1	0.9-1.0	1.9

nt is
mple
re
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0
9-2.0


81

33			HAS-217a						0.0-0.1	0.9-1.0	1.9-
B- Strea	am Crossin	gs									
B1- Oratia	B1- Oratia Bridge										
34	BH-251			Y	-	0.0-0.2	0.9-1.1	1.9-2.9			
35	BH-252			Y	-	0.0-0.2	0.9-1.1	1.9-2.9			
B2- Opanu	ıku Stream Brid	ge									
36	BH-253					0.0-0.2	0.9-1.1	1.9-2.9			
37		HA-254				0.0-0.2	0.9-1.1	1.9-2.9			
38		HA-255				0.0-0.2	0.9-1.1	1.9-2.9			
39	BH-256					0.0-0.2	0.9-1.1	1.9-2.9			
B3- Parem	uka Bridge										
40	BH-257			Y	-	0.0-0.2	0.9-1.1	1.9-2.9			
41	BH-258	(possible HA)				0.0-0.2	0.9-1.1	1.9-2.9			
42		HA-259				0.0-0.2	0.9-1.1	1.9-2.9			
43		HA-260				0.0-0.2	0.9-1.1	1.9-2.9			
44	BH-261					0.0-0.2	0.9-1.1	1.9-2.9			
45		HA-262				0.0-0.2	0.9-1.1	1.9-2.9			
B4- Don Bu	uck & Woodsid	e Bridge									
46	BH-263			Y	-	0.0-0.2	0.9-1.1	1.9-2.9			
47	BH-264					0.0-0.2	0.9-1.1	1.9-2.9			
B5- Bush R	Road Stream										
48	BH-265			Y	Y	0.0-0.2	0.9-1.1	1.9-2.9			
49		HA-266				0.0-0.2	0.9-1.1	1.9-2.9			
50		HA-267				0.0-0.2	0.9-1.1	1.9-2.9			\neg
	Ì										
Total Piezo)s			8							
Total grou	ndwater sample	es			2						
Total soil s							66	·			
	nent samples									81	<u> </u>

2- Laboratory Testing Programme: SOIL

Item	Machine	Hand Auger		Soil Sa	Imples	Parameters to be tested (see Sampling Methodology Document)			
	Boreholes	Boreholes		Depth (m bgl)					
						Metals (1)	TPH (2)	PaH (3)	(
A- Advanc	ed Works								
1a	BH-201			0.0-0.2		Y	Y	Y	
1b					0.9-1.1	Y	Y	Y	
2a	BH-202			0.0-0.2		Y	Y	Y	
2b					0.9-1.1	Y	Y	Y	

	1.9-2.0
1	

4a	BH-204		0.0-0.2		Y	Y	Y	
4b				0.9-1.1	Y	Y	Y	
B- Stream	Crossings							\perp
								—
B1- Oratia								
34a	BH-251		0.0-0.2		Y	Y	Y	_
B2- Opanu	ا ku Stream Brid	ge						
37a		HA-254	0.0-0.2		Y	Y	Y	
37b				0.9-1.1	Y	Y	Y	
38a		HA-255	0.0-0.2		Y	Y	Y	
								4
B3- Parem	uka Bridge							
42a		HA-259	0.0-0.2		Y	Y	Y	
43a		HA-260	0.0-0.2		Y	Y	Y	
				0.9-1.1	Y	Y	Y	
B4- Don Bi	uck & Woodside	Bridge		+ +				-
46a	BH-263		0.0-0.2		Y	Y	Y	
B5- Bush R	Road Stream							
49a		HA-266	0.0-0.2		Y	Y	Y	
Total soil samples for Testing				15				+
		<u>8</u>						+
L								

Notes:

1) Metals: Arsenic, Cadmium, Chromium (total), Copper, Lead, Nickel and Zinc, plus Mercury

2) TPH = Total Petroleum Hydrocarbons

3) PaH = Polycyclic Aromatic Hydrocarbons

4) OCP = Organochlorine Pesticides

3- Laboratory Testing Programme: SEDIMENT

Item	Machine	Hand Auger	Hand Auger	Sediment Sample			Parameters to be	Tested (see Sampling N	/lethodology	Document)	
	Boreholes	Boreholes	Boreholes	Depth (m bgl)								Ecology
			+ Scalas	 		Metals (1)	TPH (2)	PaH (3)	OCP (4)	TBT (5)	TOC (6)	Metals (7)
A- Advance	ed Works			 								
10a			HAS-206	0.0-0.1		Y	Y	Y	Y	Y	Y	Y
19a			HAS-210a	0.0-0.1		Y	Y	Y	Y	Y	Y	Y
19b					0.9-1.0	Y	Y	Y				
20a			HAS-211	0.0-0.1		Y	Y	Y			Y	Υ
23a			HAS-212a	0.0-0.1		Y	Y	Y	Y	Y	Y	Y
23b					0.9-1.0	Y	Y	Y	Y	Y		
24a			HAS-213	0.0-0.1		Y	Y	Y			Y	Y
27a			HAS-214a	0.0-0.1		Y	Y	Y	Y	Y	Y	Y
27b					0.9-1.0	Y	Y	Y	Y	Y		

Y
Y
Y Y Y
Y
Y
Y
Y Y Y
Y
Y
Y

28a		HAS-215	0.0-0.1		Y	Y	Y			Y	Υ
31a		HAS-216a	0.0-0.1		Y	Y	Y	Y	Y	Y	Υ
31b				0.9-1.0	Y	Y	Y	Y	Y		
32a		HAS-217	0.0-0.1		Y	Y	Y			Y	Υ
Total sediment samples for testing		ting	1	.3							

Notes:

1) Metals: Arsenic, Cadmium, Chromium (total), Copper, Lead, Nickel and Zinc, plus Mercury

2) TPH = Total Petroleum Hydrocarbons

3) PaH = Polycyclic Aromatic Hydrocarbons

4) OCP = Organochlorine Pesticides

5) TBT = Tributyl Tin

6) TOC = Total Organic Carbon

7) Ecology Metals: These shall be in accordance with the document Auckland Regional Council Technical Publication (TP) No. 168, August 2004. (this publication uses Environmental Response Criteria and R J Hill Laboratories in Hamilton can undertake these tests accordingly)

4- Laboratory Testing Programme: GROUNDWATER

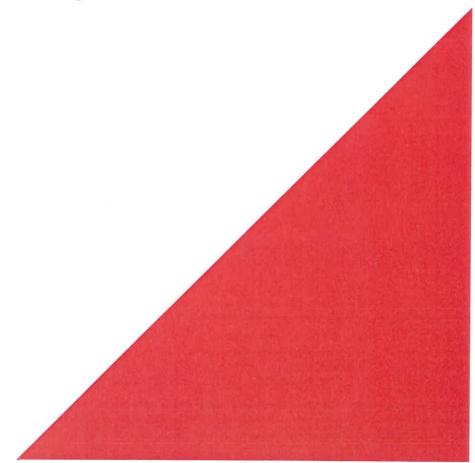
Item	Machine	Hand Auger	Hand Auger	Piezo	Gw sample?	Parar	meters to be tes	sted
	Boreholes	Boreholes	Boreholes					
			+ Scalas			Dissolved	ТРН	PaH
						Metals (1)		
A- Advance	ed Works							
1	BH-201			Y	Y	Y	Y	Y
48	BH-265			Y	Y	Y	Y	Y
Total grou	ndwater sample	es for testing			2			

Notes:

1) Dissolved metals: Arsenic, Cadmium, Chromium (total), Copper, Lead, Nickel and Zinc, plus Mercury

2) The level of detection limit, for dissolved metals, shall be 'trace' level as offered by R J Hill Laboratories in Hamilton

APPENDIX E ENVIRONMENTAL SAMPLING AND TESTING REPORT (OPUS, 2014A)



Watercare

NH2 Watermain Greenhithe and Stream Crossings Environmental Sampling and Testing Report

August 2014

Watercare

NH2 Watermain

Greenhithe and Stream Crossings

Environmental Sampling and Testing Report

August 2014

Prepared By

Fom Van Deelen Engineering Geologist

Roger High

Engineering Geologist

Opus International Consultants Ltd Auckland Civil

The Westhaven, 100 Beaumont St PO Box 5848, Auckland 1141 New Zealand

Telephone: Facsimile:

+64 9 355 9500 +64 9 355 9585

Date: Project No Reference: Status:

21/08/2014 1-C0935.50 Opus Report GS14/091 Issue 1 for Watercare

Reviewed By

Roger High Principal - Engineering Geology

Approved for Release By

> Michael Fox **Project Manager**

Document Status

Revision Number	Date	Amended Section	Author	Description
0	11/08/14	N/A	T Van Deelen, R High	Draft for Internal Review
1	21/08/14	All	T Van Deelen, R High	Issue 1 for Watercare

Contents

1	Introduction1
2	Scope of this Investigation2
3	Sampling Methodology
	3.1 Soil Sampling Methodology
	3.2 Sediment Sampling Methodology
	3.3 Groundwater Sampling Methodology
4	Sample Testing4
5	Quality Assurance and Quality Control (QA/QC)
	5.1 Field Replicate Sample
	5.2 Laboratory Replicate Testing
6	Limitations7
Ар	pendices
1	Plans

- 2 Hill Laboratories Analysis Records
- 3 Marine Sediment Particle Size Plots

g:\tlas\rodney\projects\1-c0210.00 c0826 geotech-mlf\watercare\1-c0935.50 nh2 advance works contamination\report\nh2 sampling and testing report.docx

1 Introduction

Watercare are proposing construction of the North Harbour No 2 watermain in the Greenhithe and Albany areas. Opus was engaged by Watercare to undertake geotechnical investigations of the new pipeline route in these areas. This report describes the sampling and environmental testing of materials obtained during these geotechnical investigations.

The work was briefed under the Geotechnical Professional Services Contract Co826, with reference to the URS/SKM Memorandum "NH2-Ground Contamination Sampling and Analysis" dated $7^{\rm th}$ May 2014.

This brief was slightly amended a number of times as a result of email correspondence with Walter Starke (Jacobs SKM Environmental Engineer) and Brett Ogilvie (Tonkin and Taylor) prior to the start of works, and a number of interactive decisions made by Walter Starke during the field works.

2 Scope of this Investigation

The scope of this investigation was to sample and test contaminant levels in soil, intertidal sediment and groundwater samples. The sampling and testing was briefed by Jacobs SKM and Tonkin and Taylor during the geotechnical investigation of NH2 watermain in the Greenhithe and Albany areas.

The sampling and testing plans were provided in the URS/SKM Memorandum "NH2-Ground Contamination Sampling and Analysis" dated 7^{th} May 2014.

This report describes the samples able to be obtained during the field works and presents the contaminant test results of those samples selected for testing. Many samples were not tested and are presently held in cold storage at Hill Laboratories.

Logs of the bores and augers where environmental samples were obtained during the geotechnical field works are contained in Appendix B of the Opus Geotechnical Factual Report (GS14/089).

3 Sampling Methodology

The location of the field tests from which the samples were obtained are shown on the site plans in Appendix 1.

Table 1 at the end of this report (the Sampling Plan) describes the samples obtained during the investigation and details of sampling as briefed by URS/SKM.

Table 2 at the end of this report (the Sample Action Inventory) describes the sampling inventory and sampling dates; dates samples were sent to Hill Laboratories and whether samples were tested or held in cold storage.

Table 3 at the end of this report (the Laboratory Testing Schedule) details the samples selected for testing and the contaminant tests required for each sample.

Table 4 at the end of this report (the Soil Contamination Test Inventory) describes the soils, Hill Laboratories reference and testing undertaken.

3.1 Soil Sampling Methodology

Soil samples were obtained from rig bores and hand augers.

Sampling from bores involved removal of the outer part of the core using a clean stainless steel knife and placing the inner part of the core into sampling containers.

Sampling from hand augers involved auguring using a 70mm diameter head down to the target depth and then obtaining the sample using a dedicated 50mm diameter head, in order to minimize the potential for cross contamination caused by contact of the auger head with soils other than at the target sampling depth. The 50mm head was washed with Decon 90^{TM} and water prior to sampling.

The soil samples were placed into Hill Laboratories supplied sample containers and stored in a cooled chilly bin. The sample jars were then stored in a fridge prior to courier overnight to Hill Laboratories.

3.2 Sediment Sampling Methodology

A number of methods were used to obtain samples of the inter-tidal sediments:

- The 0.00-0.02m sediment sample for "Ecology Metals" was obtained using a stainless steel trowel in broad accordance with the recommendations in ARC TP 168 (2004) "Blueprint for monitoring urban receiving environments". Replication and sub-sampling were not undertaken;
- Deeper samples in non-collapsing sediment were obtained using a 50mm diameter hand auger as described for the soil samples above;
- Deeper samples in collapsing sediment were obtained using a piston sampler.

All sediment samples were placed into Hill Laboratories supplied sample containers and stored in a cooled chilly bin. The sample jars were then stored in a fridge prior to courier overnight to Hill Laboratories.

3.3 Groundwater Sampling Methodology

The groundwater in each borehole was sampled using a hand-held Waterra footvalve with a dedicated 16mm diameter tube.

Prior to sampling the groundwater, the boreholes were purged of three times the water volume of the bore, in order to ensure that the groundwater sample taken was representative of the groundwater aquifer.

After purging, samples were poured into laboratory supplied sample jars, field filtered for heavy metals, placed in a cooled chilly bin, and then transferred to a fridge prior to over-night courier transport to Hill Laboratories.

4 Sample Testing

The samples selected for testing and those held in cold storage at Hill Laboratories are shown in Table 2 at the end of this report. Departures of the testing from the original brief are shown in Table 3 at the end of this report and descriptions of samples and tests undertaken are shown on the test inventory in Table 4 at the end of this report.

Most tests were undertaken to comply with the original brief in the URS/SKM Memorandum "NH2-Ground Contamination Sampling and Analysis" dated 7th May 2014. A notable exception is the tests for "Ecology Metals". Hill Laboratories are not IANZ certified for this test, as required by the brief, and testing was not undertaken as per TP 168¹, again as required by the brief. The main departures of the test method to that described in TP 168 are:

- Total recoverable HM, PAH and TOC tests were undertaken on the whole sample as received, and not the <500 µm faction²;
- Quantification of the >500 μ m, 500-250 μ m, 250-125 μ m, 125-63 μ m and <63 μ m fractions of the sediment samples were not determined³;
- The whole sample was air-dried at 35°C overnight and not freeze dried before testing4.

It is acknowledged that Brett Ogilvie verbally advised that TOC, PAH, and TBT should be undertaken on each sediment sample tested for "Ecology metals", however TBT was only undertaken on 5 of the 9 samples tested for "Ecology metals" (Table 4), as per the original URS/SKM brief (Table 3).

¹ ARC TP 168: "Blueprint for monitoring urban receiving environments", August 2004

² In fact most samples are less than 500 microns, other than for some shell particles.

 $^{^3}$ PSD plots of marine sediments, reported in Opus Report GS 14/089, at the same site as some of the samples obtained for "ecology metal" tests are included in Appendix 3. Note that the depth of sampling differs from that for the ecology metal tests.

⁴ Hill Laboratories do not undertake freeze drying. The former ARC considered air drying as an acceptable alternative.

Soil test results are shown in the Hill Laboratories Analysis Report Nos 1280093, 1283722, 1289075, 1293375, and 1297663 in Appendix 2. Groundwater test results are shown in the Hill Laboratories Analysis Report 1308993 in Appendix 2.

5 Quality Assurance and Quality Control (QA/QC)

Sampling was undertaken by Tom Van Deelen (Engineering Geologist) between May and July 2014. All samples were couriered overnight to Hill Laboratories in Hamilton. A Chain of Custody Record was received.

RJ Hill Laboratories is an IANZ accredited laboratory and undertakes its own QA. This lab is IANZ accredited to undertake all tests undertaken for this investigation with the exception of the ecology metals and total organic carbon tests.

5.1 Field Replicate Sample

The sampling and testing brief required sampling and testing of a field replicate at a rate of one every ten samples tested. Subsequently Brett Ogilvie (Tonkin and Taylor) verbally advised that replicates for the samples obtained from 0.0 - 0.02m depth were not required (in contrast to the 3 replicates per site required in Figure 3.3 of TP168). Walter Starke (Jacobs) was advised of this matter by email dated the 9th May 2014.

A total of 17 samples were tested other than the sediment from 0.0m - 0.02m depth (Table 4). Accordingly 1 field replicate was tested: BH201 – 1.0m depth (Hill Lab Ref 1289075.7) and replicate labelled 10m depth (Hill Lab Ref 1289075.7).

5.2 Laboratory Replicate Testing

The brief did not require laboratory replicate testing, therefore no laboratory replicate tests were undertaken for this project.

6 Limitations

This report has been prepared solely for the use of Watercare and their agents. This report is not suitable for any other circumstances than the purpose for which it was prepared. This report has been prepared for the purpose of providing sampling and testing results for the NH2 project.

Opus accepts no responsibility or liability for:

- The consequences of this document being used for purposes other than for which it was commissioned and,
- This report being used by any other party other than the organisation by whom it was commissioned.

The sampling and testing requirements were determined by other parties. The results presented in the report are relevant to the date that the work was undertaken, and should not be relied on to represent conditions at later dates. Conditions of the site may change over time due to natural processes and anthropogenic activities.

Opus International Consultants shall not be liable for any loss or damage, directly or indirectly arising out of, resulting from, in consequence of, contributed to or aggravated by asbestos in whatever form or quality.

Table 1: NH2 Sampling Plan

Field Test Undertaken

Sample Obtained from Proposed Depth Range Proposed Sample not Obtained

ltem	Rig Bores	Hand Augers		Soil Samples			Sediment Samp	es
_				Depth (m bgl))		Depth (m bgl)	
A- Adva	anced Wo	rks			-			
				_			T	
1	BF 201		0.0-0.2	0.9-1.1	1.9-2.9			
2	BH-202		0.0-0.2	0.9-1.1	1.9-2.9			
3	BH-203		0.0 0.2	0.5-1.1	1.3-2.9		+	
4	BH-204		0.0-0.2	0011	1020			
5	And a second	HA-201	0.0-0.2	0.9-1.1	1.9-2.9	·		
6		HA-202		0.9-1.1	1.9-2.9			
7		HAS-202	0.0-0.2	0.9-1.1	1.9-2.9			-
8		HAS-203			ediment	0.0-0.1	0.9-1.0	1.9-2.0
9		and the second se		lower sampl	e not sediment	0.0-0.1	0.9-1.0	1.9-2.0
		HAS-205				0.0-0.1	0.9-1.0	1.9-2.0
10		HAS-206				0.0-0.1	0.9-1.0	1.9-2.0
11		HAS-206a				0.0-0.1	0.9-1.0	1.9-2.0
12		HAS-207				0.0-0.1	0.9-1.0	1.9-2.0
13		HAS-207a		site under w	ater at all tides	0.0-0.1	0.9-1.0	1.9-2.0
14		HAS-208				0.0-0.1	0.9-1.0	1.9-2.0
15		HAS-208a				0.0-0.1	0.9-1.0	1.9-2.0
16		HAS-209				0.0-0.1	0.9-1.0	1.9-2.0
17		HAS-209a				0.0-0.1	0.9-1.0	1.9-2.0
18		HAS-210				0.0-0.1	0.9-1.0	
19		HAS-210a				0.0-0.1		1.9-2.0
20		HAS-211				0.0-0.1	0.9-1.0	1.9-2.0
21		HAS-211a				Statements where the sub-	0.9-1.0	1.9-2.0
22		HAS-212				0.0-0.1	0.9-1.0	1.9-2.0
23		HAS-212				0.0-0.1	0.9-1.0	1.9-2.0
24		HAS-212				0.0-0.1	0.9-1.0	1.9-2.0
25		HAS-213				0.0-0.1	0.9-1.0	1.9-2.0
26		and the second second				0.0-0.1	0.9-1.0	1.9-2.0
27		HAS-214				0.0-0.1	0.9-1.0	1.9-2.0
28		HAS-214a				0.0-0.1	0.9-1.0	1.9-2.0
		HAS-215		-		0.0-0.1	0.9-1.0	1.9-2.0
29		HAS-215a				0.0-0.1	0.9-1.0	1.9-2.0
30		HAS-216				0.0-0.1	0.9-1.0	1.9-2.0
31		HAS-216a				0.0-0.1	0.9-1.0	1.9-2.0
32		HAS-217				0.0-0.1	0.9-1.0	1.9-2.0
33		HAS 2176				0.0-0.1	0.9-1.0	1.9-2.0
				13			36	
B- Stream	m Crossing	zs		13			36	
- Stream	m Crossing	gs		13			36	
		zs		13			36	
1- Oratia B	ridge	35	0.0.0.2					
1- Oratia Bi 34	ridge BH-251	35	0.0-0.2	0.9-1.1	1.9-2.9	deep samples	not obtained - hy	rdroexcavated
1- Oratia B	ridge	35	0.0-0.2 0.0-0.2		1.9-2.9 1.9-2.9	deep samples deep samples		rdroexcavated rdroexcavated
1- Oratia Bi 34 35	ridge BK-251 BH-252		and the second s	0.9-1.1		deep samples deep samples	not obtained - hy	rdroexcavated droexcavated
1- Oratia B 34 35 2- Opanuku	ridge BH-251 BH-252 J Stream Bridg		0.0-0.2	0.9-1.1	1.9-2.9	deep samples deep samples	not obtained - hy	droexcavated droexcavated
1- Oratia Bi 34 35 2- Opanuku 36	ridge BK-251 BH-252	e	0.0-0.2	0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	rdroexcavated rdroexcavated
1- Oratia Bi 34 35 2- Opanuku 36 37	ridge BH-251 BH-252 J Stream Bridg	е НА-254	0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	droexcavated droexcavated
1- Oratia Br 34 35 2- Opanuku 36 37 38	ridge BH-251 BH-252 J Stream Bridg BH-253	e	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	droexcavated
1- Oratia Bi 34 35 2- Opanuku 36 37	ridge BH-251 BH-252 J Stream Bridg	е НА-254	0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9	deep samples	not obtained - hy	/droexcavated /droexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256	е НА-254	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples	not obtained - hy	/droexcavated /droexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 39	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 a Bridge	е НА-254	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples	not obtained - hy	/droexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 - Paremuk 40	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 a Bridge BH-257	е НА-254 НА-255	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples	not obtained - hy	/droexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 - Paremuk 40 41	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 a Bridge	e HA-254 HA-255 (possible HA)	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples	not obtained - hy	/droexcavated /droexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 - Paremuk 40 41 42	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 a Bridge BH-257	е НА-254 НА-255	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	droexcavated droexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 - Paremuk 40 41	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 a Bridge BH-257	e HA-254 HA-255 (possible HA)	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	rdroexcavated
L- Oratia B 34 35 2- Opanuku 36 37 38 39 - Paremuk 40 41 42	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 a Bridge BH-257	е НА-254 НА-255 (possible HA) Н/- 259	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	rdroexcavated
L- Oratia B 34 35 C- Opanuku 36 37 38 39 - Paremuk 40 41 42 43	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 Ca Bridge BH-257 BH-258	е НА-254 НА-255 (possible HA) НА-259 НА-260	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	rdroexcavated
L- Oratia B 34 35 C- Opanuku 36 37 38 39 - Paremuk 40 41 42 43 44	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 Ca Bridge BH-257 BH-258	е НА-254 НА-255 (possible HA) Н/- 259	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	rdroexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 2- Parem⊔k 40 41 42 43 44 45	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 BH-257 BH-258 BH-258 BH-258	e HA-254 HA-255 (possible HA) H/259 HA-260 HA-262	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples	not obtained - hy	rdroexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 39 2- Parem⊔k 40 41 42 43 44 45	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 Ca Bridge BH-257 BH-258	e HA-254 HA-255 (possible HA) H/259 HA-260 HA-262	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples	not obtained - hy	rdroexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 3- Paremuk 40 41 42 43 44 45 - Don Buck 46	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 BH-257 BH-258 BH-258 BH-258 BH-261 SH 263	e HA-254 HA-255 (possible HA) H/259 HA-260 HA-262	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples	not obtained - hy	rdroexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 39 39 39 39 4- Paremuk 40 41 42 43 44 45 - Don Buck	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 BH-257 BH-258 BH-258 BH-258 BH-258 BH-251	e HA-254 HA-255 (possible HA) H/259 HA-260 HA-262	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	/droexcavated /droexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 2- Paremuk 40 41 42 43 44 45 - Don Buck 46 47	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 BH-258 BH-258 BH-258 BH-258 BH-258 BH-258 BH-258 BH-261 BH-263 BH-264	e HA-254 HA-255 (possible HA) H/259 HA-260 HA-262	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	/droexcavated /droexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 39 39 39 40 41 42 43 44 45 - Don Buck 46 47 - Bush Roa	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 BH-258 BH-258 BH-258 BH-258 BH-258 BH-258 BH-258 BH-264 BH-263 BH-264 BH-264 BH-264 BH-264	e HA-254 HA-255 (possible HA) H/259 HA-260 HA-262	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	rdroexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 39 39 39 40 41 42 43 44 45 46 47 Bush Road 48	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 BH-258 BH-258 BH-258 BH-258 BH-258 BH-258 BH-258 BH-261 BH-263 BH-264	e HA-254 HA-255 (possible HA) H/- 259 HA-260 HA-262 Bridge	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	rdroexcavated
1- Oratia B 34 35 2- Opanuku 36 37 38 39 39 39 39 40 41 42 43 44 45 - Don Buck 46 47 - Bush Roa	ridge BH-251 BH-252 J Stream Bridg BH-253 BH-256 BH-256 BH-258 BH-258 BH-258 BH-258 BH-258 BH-258 BH-258 BH-264 BH-263 BH-264 BH-264 BH-264 BH-264	e HA-254 HA-255 (possible HA) H/259 HA-260 HA-262	0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2 0.0-0.2	0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1 0.9-1.1	1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9 1.9-2.9	deep samples deep samples	not obtained - hy	rdroexcavated rdroexcavated

<u>Table 2:</u>	Watercare	NH2 Sample	Action	Inventory

I.D	Sample Depth	Date Sampled	Time Sampled	Date to Lab	Reference Number	Results Received
	0.1	19/05/2014	10am		1280093.4	see Table 4
BH263	1.0	19/05/2014	10.10am	26/05/2014	1280093.14	
	2.5	19/05/2014	12.30pm		1280093.15	HELD
	0.1	20/05/2014	12.05pm		1280093.5	
BH264	1.0	20/05/2014	12.07pm	26/05/2014	1280093.6	HELD
	2.2	20/05/2014	12.09pm	1	1280093.7	
	0.1	22/05/2014	2.35pm		1280093.11	
BH253	1.0	22/05/2014	2.36pm	26/05/2014	1280093.12	HELD
	2.0	22/05/2014	2.38pm	, , , ,	1280093.13	HELD
	0.1	22/05/2014	3.37pm		1280093.1	see Table 4
HA254	1.1	22/05/2014	3.38pm	26/05/2014	1280093.2	see Table 4
	2.2	22/05/2014	3.39pm		1280093.8	HELD
	0.1	23/05/2014	12.20pm		1280093.8	
HA255	1.1	23/05/2014	12.20pm	26/05/2014		see Table 4
	2.2	23/05/2014	12.22pm	20/03/2014	1280093.5	HELD
	0.1	26/05/2014	9.52am		1280093.5	
BH256	1.0	26/05/2014	9.59am	20/06/2014	1293375.1	
5.1200	2.5			30/06/2014	1293375.2	HELD
	0.1	26/05/2014	11.45am		1293375.3	
BH202	1.0	28/05/2014	2.30pm	A log log	1283722.1	see Table 4
DIIZUZ		28/05/2014	2.31pm	4/06/2014	1283722.2	see Table 4
	2.1	28/05/2014	2.33pm		1283722.3	HELD
114240	0.1	28/05/2014	2.52pm	additional sam	ples obtained - not in	
HA219	1.0	28/05/2014	2.53pm		pling plan	HELD at Opus
	2.0	28/05/2014	2.53pm			
	0.1	28/05/2014	3.13pm	additional sam	ples obtained - not in	
HA218	1.0	28/05/2014	3.14pm			HELD at Opus
	2.0	28/05/2014	3.15pm	Sall	pling plan	•
	0.1	29/05/2014	12.41pm		1283722.4	
HA201	1.0	29/05/2014	12.42pm	4/06/2014	1283722.5	HELD
_	2.0	29/05/2014	12.43pm		1283722.6	
	0.1	29/05/2014	12.43pm		1283722.7	
HA203	1.0	29/05/2014	12.44pm	4/06/2014	1283722.8	HELD
	2.0	29/05/2014	12.45pm	,,	1283722.9	HELD
HA202	0.1	30/05/2014	12.03pm	4/06/2014	1283722.10	HELD
	0.1	5/06/2014	1.28pm	.,	1289075.1	see Table 4
BH204	1.0	5/06/2014	1.29pm	17/06/2014	1289075.2	
	2.0	5/06/2014	1.30pm	17,00,2014	1289075.3	see Table 4
	0.1 (x2 Dup)	9/06/2014	10.34am			HELD
вн201	1.0	9/06/2014	10.36am	17/06/2014	1289075.4, 7	see Table 4
	2.0	9/06/2014	10.37am	17/00/2014	1289075.5	see Table 4
HA211	0.0 (x2)	11/06/2014		17/05/2014	1289075.6	HELD
IA211a	0.0 (x2)	11/06/2014	9.55am	17/06/2014	1289075.17, 30	see Table 4
INZIII U	0.1		10.00am	17/06/2014	1289075.18	HELD
вн265	1.0	11/06/2014	2.00pm	47/25/224	1289075.8	
	1.9	11/06/2014	2.01pm	17/06/2014	1289075.9	HELD
		11/06/2014	2.03pm		1289075.10	
HA204 -	0.0 (x2)	11/06/2014	3.10pm	17/06/2014	1289075.19	HELD
	0.8	12/06/2014	11.25am		1289075.20	
HA205 -	0.0 (x2)	12/06/2014	9.45am	17/06/2014	1289075.21	
	0.6	12/06/2014	11.45am	17,00,2014	1289075.22	HELD
1A206 -	0.0 (x2)	12/06/2014	12.15pm	17/06/2014	1289075.23, 31	see Table 4
	0.6	12/06/2014	12.35pm		1289075.24	HELD
L	0.0 (x2)	12/06/2014	2.35pm		1289075.25	
A206a	0.6	12/06/2014	2.57pm	17/06/2014	1289075.26	HELD
ſ	0.9	12/06/2014	2.55pm		1289075.27	
A212a	0.0 (x2)	13/06/2014	11.00am	17/06/2014	1289075.28, 32	soo Tabla 4
IA212	0.0 (x2)	13/06/2014	11.05am	17/06/2014	1289075.29	see Table 4
	0.1	13/06/2014	3.00pm	1//00/2014		HELD
зн257	1.0	13/06/2014	3.01pm	17/06/2014	1289075.11	
	2.0	13/06/2014		-1/100/2014	1289075.12	HELD
	2.0	13/00/2014	3.02pm	1	1289075.13	

HA213a	0.0 (x2)	13/06/2014	10.45am	30/06/2014	1293375.4	HELD	
HA213	0.0 (x2)	13/06/2014	2.30pm	30/06/2014	1293375.5, 22	see Table	
DUDEO	0.1	17/06/2014	10.38am		1289075.14		
BH258	1.0	17/06/2014	10.40am	17/06/2014	1289075.15	HELD	
	2.0	17/06/2014	10.41am		1289075.16		
HA259	0.1	23/06/2014	12.50pm	30/06/2014	1293375.6	see Table	
	1.0	23/06/2014	12.51pm	50/00/2014	1293375.7	HELD	
	0.1	23/06/2014	1.56pm		1293375.8	see Table	
HA260	1.0	23/06/2014	1.58pm	30/06/2014	1293375.9	see Table	
	2.0	23/06/2014	1.59pm		1293375.10	HELD	
HA217a	0.0 (x2)	24/06/2014	10.06am	30/06/2014	1293375.12	HELD	
HA217	0.0 (x2)	24/06/2014	10.10am	30/06/2014	1293375.11, 23	see Table	
HA210a -	0.0 (x2)	24/06/2014	11.30am	20/05/2014	1293375.13	see Table	
	0.5	24/06/2014	11.30am	30/06/2014	1293375.14	see Table	
HA210	0.0 (x2)	24/06/2014	12.35pm	30/06/2014	1293375.15	HELD	
HA215	0.0 (x2)	25/06/2014	10.10am	30/06/2014	1293375.16, 25	see Table	
HA215a	0.0 (x2)	25/06/2014	10.15am	30/06/2014	1293375.17	HELD	
HA207	0.0 (x2)	25/06/2014	11.45am	30/06/2014	1293375.18	HELD	
HA214	0.0 (x2)	25/06/2014	12.10pm	30/06/2014	1293375.19	HELD	
HA214a	0.0 (x2)	25/06/2014	12.21pm	30/06/2014	1293375.20, 26	see Table 4	
HA209a	0.0 (x2)	26/06/2014	2.45pm		1297663.6		
TIAZUJA	0.9	26/06/2014	2.45pm	10/07/2014	1297663.7	HELD	
HA209	0.0 (x2)	26/06/2014	3.37pm	10/07/2014	1297663.5	see Table 4	
HA213a	0.8	27/06/2014	2.30pm	10/07/2014	1297663.10	HELD	
HA216	0.0 (x2)	30/06/2014	2.30pm	10/07/2014	1297663.8	HELD	
HA216a	0.0 (x2)	30/06/2014	2.35pm	10/07/2014	1297663.9	HELD	
HA208	0.0 (x2)	1/07/2014	8.41am		1297663.1, 25	see Table 4	
	0.7	1/07/2014	9.10am	10/07/2014	1297663.2	HELD	
HA208a	0.0 (x2)	1/07/2014	8.42am	10/07/2014	1297663.3	HELD	
	0.1	1/07/2014	2.31pm		1297663.18		
BH261	1.0	1/07/2014	2.33pm	10/07/2014	1297663.19	HELD	
	2.0	1/07/2014	2.34pm	1	1297663.20	need	
	0.1	2/07/2014	11.15am		1297663.11	see Table 4	
HA266	1.0	2/07/2014	11.16am	10/07/2014	1297663.12	366 18016 4	
	2.0	2/07/2014	11.17am	1,, F	1297663.13	HELD	
	0.1	2/07/2014	11.41am	├──── ├	1297663.14		
HA267	1.0	2/07/2014	11.49am	10/07/2014	1297663.15	HELD	
	2.0	2/07/2014	11.50am	<u>'''''</u>	1297663.16	HELD	
	0.1	3/07/2014	10.43am	├───	1297663.21		
HA262	1.0	3/07/2014	10.44am	10/07/2014	1297663.22		
F	2.0	3/07/2014	10.45am		1297663.23	HELD	
BH251	0.1	3/07/2014	11.00am	10/07/2014	1297663.17	coo Table 4	
BH252	0.1	3/07/2014	11.10am	10/07/2014	1237003.17	see Table 4	

Table 3- Laboratory Testing

SOIL Field Test Undertaken Sample Obtained from Proposed Depth Range

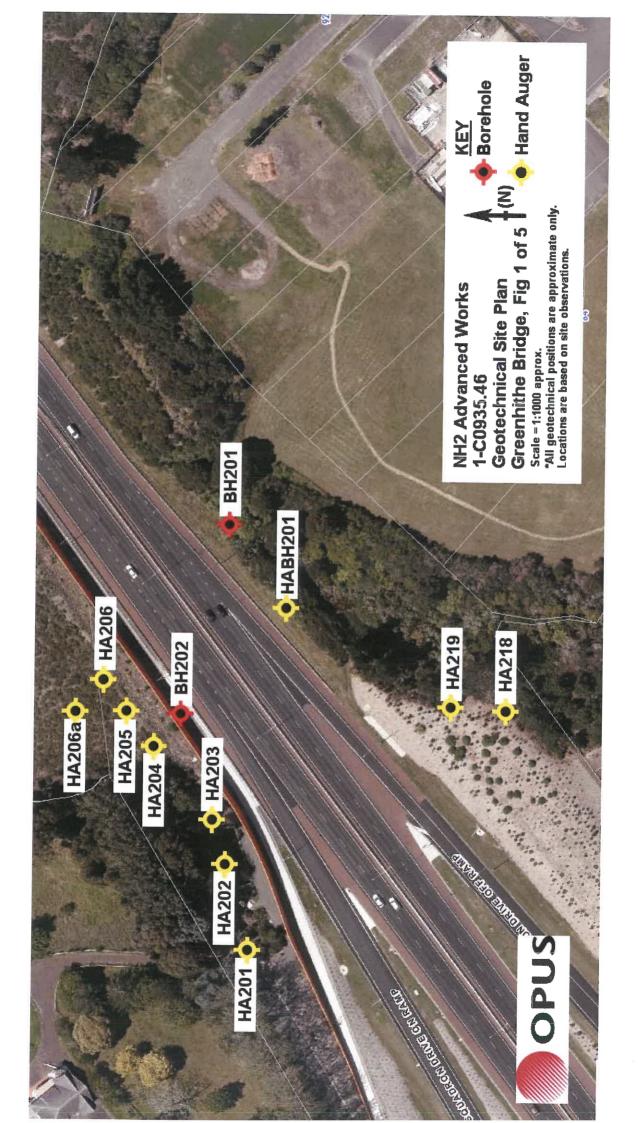
Proposed Sample not Obtained and/or Tested Alternative Field Test / Sample to Brief

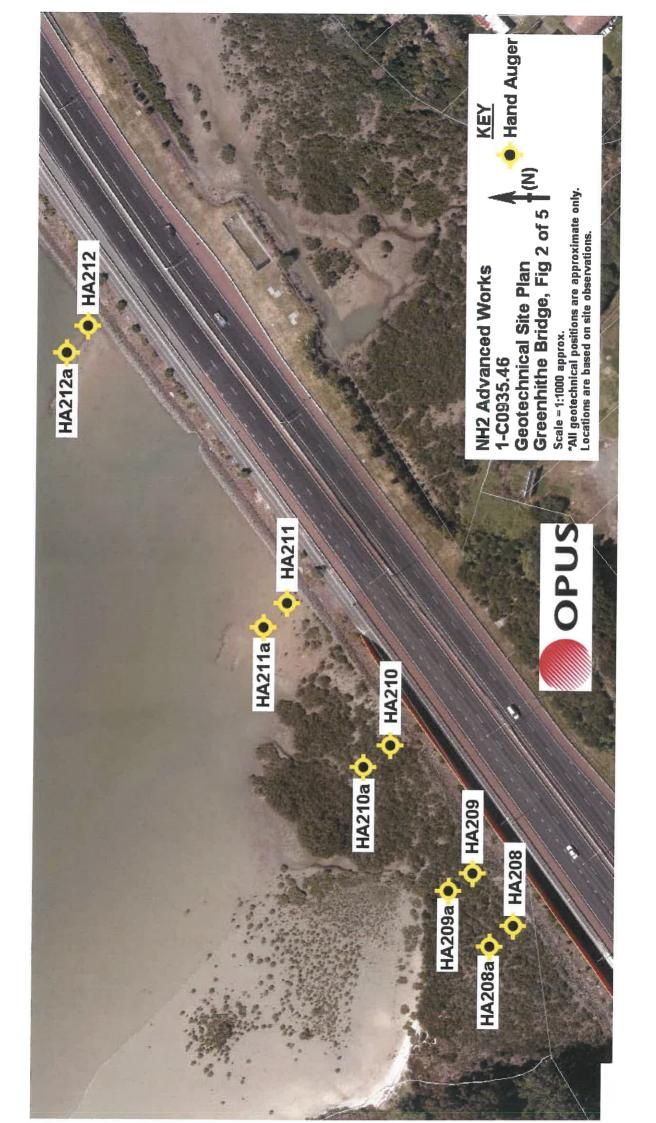
Item	Rig Bores	Hand Augers		amples		Tested Pa	arameters	
			Depth	(m bgl)	Metals (1)	TPH (2)	PaH (3)	OCP (4)
A- Adva	anced Wor	ks						
1a	340-201		0.0-0.2		Y	Y		
1b			0.0-0.2	0.9-1.1	Y	Y Y	Y	Υ
2a	203-203		0.0-0.2	0.5-1.1	Y	- <u>Y</u>	Y Y	
2b	and the second sec		0.0 0.2	0.9-1.1	Y	Y	Y	Υ
4a	联邦-2334		0.0-0.2	0.5-1.1	Y	Y		
4b			010 0.2	0.9-1.1	Y	Y	Y Y	Υ
B- Strea	m Crossin	gs						
B1- Oratia	Bridge							
34a	824-953		0.0-0.2		Y	Y	Y	Y
32- Opanul	u Stream Bridg	je						
37a		MA.208	0.0-0.2		Y	Y	Y	Y
37b				0.9-1.1	Y	Y	Y	Y Y
38a		HA-235	0.0-0.2		Y	Y	Y	Y
3- Paremu	ka Bridge				<u> </u>			
42a		HA-259	0.0-0.2		Y	Y	Y	Y
43a		HA-260	0.0-0.2		Y	Y	Y	
				0.9-1.1	Y	Y	Y	Y
4- Don Bu	k & Woodside	Bridge						
46a	84-253		0.0-0.2		Y	Y	Y	Y
5- Bush Ro	ad Stream							
49a		NA-206	0.0-0.2		Y	Y	Y	Y
otal soil sa	mples for Testi	ng						

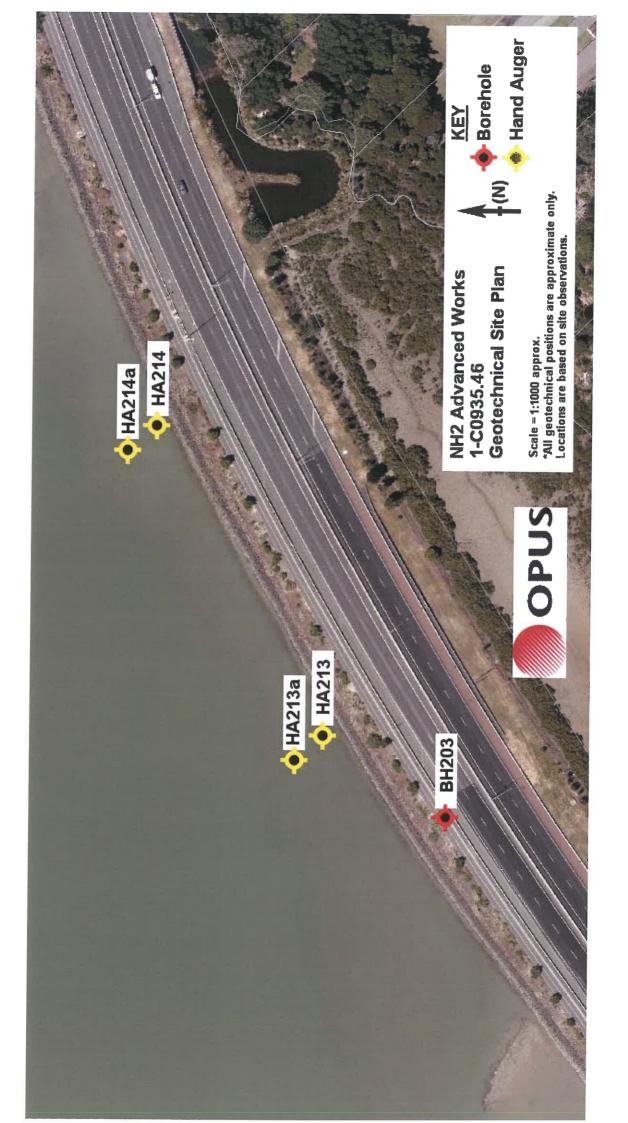
SEDIMENT

Item	Rig Bores	Hand Augers	Sedime	nt Samples		Parameters to	be Tested (see S	ampling Metho	dology Docu	ment)	
			Dept	n (m bgl)	Metals	ТРН	PaH	OCP	ТВТ	тос	Ecology
A- Advance	ed Works										Metals
10a		145 205									<u> </u>
31a		HAS 206	0.0-0.1		Y	Y	Y	Y	Y	Y	Y
219		HAS 208	0.0-0.1		у	у	<u> </u>	у	У	у	y y
19a		HAS 209	0.0-0.1		У	<u> </u>	y y	У	У		
		HAS 210a	0.0-0.1		Y	Y	Y	Y	Y	Y	Y
19b				0.9-1.0	Y	Y	Y				<u> </u>
20a		HAS 211	0.0-0.1		Y	Y	Y			Y	Y
23a		HAS 212a	0.0-0.1		Y	Y	Y	Y	Y	Y	Y
23b		and the second second second second		0.9-1.0							<u> </u>
24a		HAS 213	0.0-0.1		Y	Y	Y			- Y	Y
27a		HAS 3140	0.0-0.1		Y	Y	Y	Y	Y	Y	r y
27b				0.9-1.0					+	·	<u> </u>
28a		Haş 215	0.0-0.1		Y	Y	Y			Y	
31a		HAS 216a	0.0-0.1						+		T
31b				0.9-1.0							
32a		MAS 217	0.0-0.1		Y	Y	Y		1	Y	
otal sedim	ent samples fo	or testing		.1							
		0		÷		· · ·			<u> </u>		

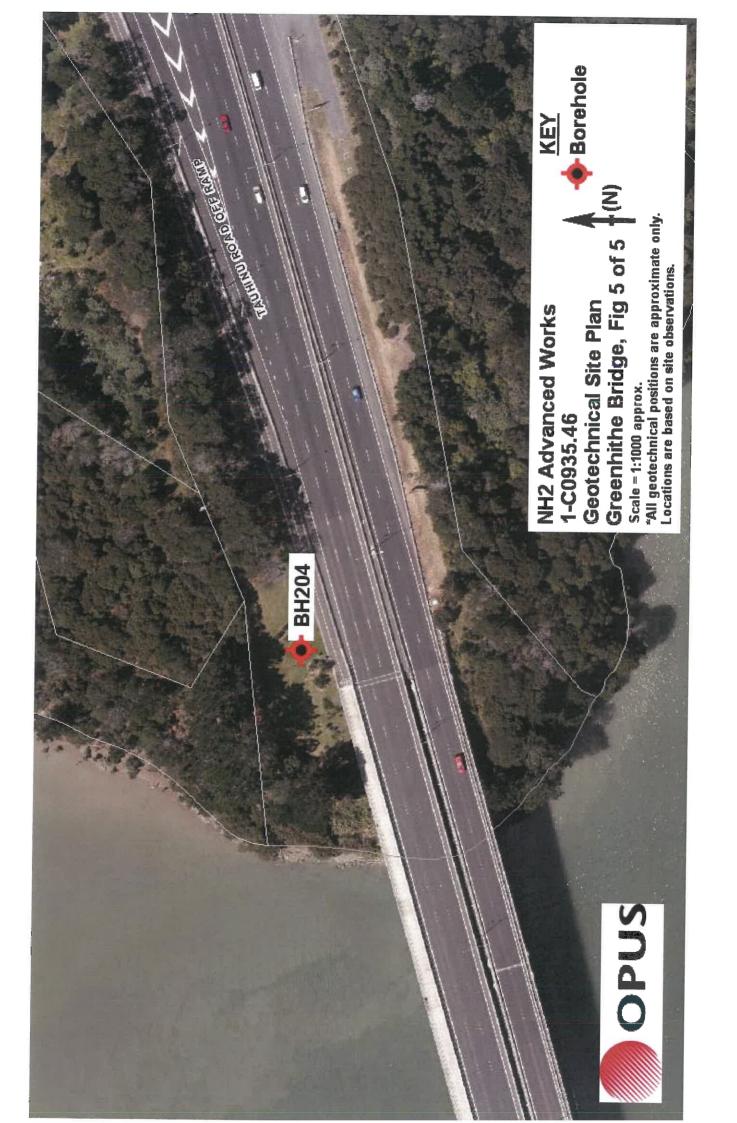
GROUNDWATER


Item	Rig Bores	Piezometer	Parameters to be tested									
	Nig Dores	Depth	Sol Metals _t	TPH	PaH							
A- Advanc	ed Works											
1	88-201		Y	Y	Y							
48	BH-265		Y	Y	Y							
Total grou	ndwater sample	s for testing		2								


Test Inventory
Contamination
NH2 Soil
Watercare
Table 4:


				Τ	Т	T	Т	T	Т	Τ	Т	Т	Т	Т	Т	T		Т				1	Т	Т	Т	Τ	T	1
TRT										•						•		•										9
TOC										•	•		•		•	•	•	•	•	•								6
Ecology metals	0									•	•		•		•	•	•	•	•	•								6
HdT	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
PAH	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
OCP	•		•	•	•	•		•	•	•	•	•	•			•		•			•	•	•	•	•	•	•	20
HM+Hg	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	27
Soil Description	clayey silt	silty clay	silty clay	silt matrix in gravel	silt	clayey silt	silty clay	silt matrix in gravel	silt	sandy silt	silt	silt	silty clay	silty clay	fine - med sand	silty clay	silt	clayey silt	clayey silt	silty clay	silty clay	silty clay	silty clay	silty clay	silt	silty clay	silty clay	TOTAL
Unit	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Fill	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Sediment	Puketoka	Puketoka	Fill	Puketoka	Puketoka	Puketoka	Alluvium	
Report Date	18/07/2014	18/07/2014	18/07/2014	18/06/2014	18/06/2014	18/07/2014	18/07/2014	4/08/2014	9/06/2014	18/07/2014	4/08/2014	4/08/2014	21/07/2014	21/07/2014	18/07/2014	18/07/2014	21/07/2014	21/07/2014	21/07/2014	21/07/2014	9/06/2014	9/06/2014	9/06/2014	21/07/2014	21/07/2014	21/07/2014	4/08/2014	
Hill Ref	1289075.4	1289075.5	1289075.7	1283722.1	1283722.2	1289075.1	1289075.2	1297663.17	1280093.4	1289075.23, 31	1297663.1, 25	1297663.5	1293375.13, 24	1293375.14	1289075.17, 30	1289075.28, 32	1293375.5, 22	1293375.20, 26	1293375.16, 25	1293375.11, 23	1280093.1	1280093.2	1280093.3	1293375.6	1293375.8	1293375.9	1287663.11	
D	BH201-0.1	BH201-1.0	BH201-1.0 ¹	BH202-0.1	BH202-1.0	BH204-0.1	BH204-1.0	BH251-0.1	BH263-0.1	HA206-0.0	HA208-0.0	HA209-0.0	HA210a-0.0	HA210a-0.5	HA211-0.0	HA212a-0.0	HAS213-0.0	HA214a-0.0	HA215-0.0	HA217-0.0	HA254-0.1	HA254-1.1	HA255-0.1	HA259-0.1	HA260-0.05	HA260-1.0	HA266-0.1	

¹Duplicate labelled 10m (Hill Labs Ref #1289075.7)

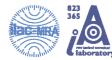

Appendix 1 – Plans

Appendix 2 – Hill Labs Analysis Records

R J Hill Laboratories Limited Tel 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand | Web www.hill-labs.co.nz

+64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz

Page 1 of 2


ANALYSIS REPORT

Client: **OPUS International Consultants** Contact: Mr Roger High C/- OPUS International Consultants PO Box 5848 AUCKLAND 1141

Lab No:	1283722	SPv1
Date Registered:	05-Jun-2014	
Date Reported:	18-Jun-2014	
Quote No:	61048	
Order No:		
Client Reference:		
Submitted By:	Mr Roger High	

Sample Type: Soil

	Sample Name:	BH202 - 0.1m	BH202 - 1.0m			
			28-May-2014 3:39			
	Lab Number:	pm 1283722.1	pm 1283722.2			
Individual Tests	Lab Humber.	1200722.1	1203122.2			
Dry Matter	g/100g as rcvd	84	74	-	_	
Heavy metals, screen As,Cd,						-
Total Recoverable Arsenic	mg/kg dry wt	<2	<2			
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10		-	-
Total Recoverable Chromium	mg/kg dry wt	6	7			-
Total Recoverable Copper	mg/kg dry wt	24	7		-	-
Total Recoverable Lead	mg/kg dry wt	7.2	, 16.5		-	-
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10		-	
Total Recoverable Nickel	mg/kg dry wt	5	4	_		-
Total Recoverable Zinc	mg/kg dry wt	71	16	_	-	-
Organochlorine Pesticides Sc		r 1	10	174 		-
Aldrin	mg/kg dry wt	< 0.010	< 0.010			
alpha-BHC	mg/kg dry wt			-		-
beta-BHC		< 0.010 < 0.010	< 0.010	-	-	
delta-BHC	mg/kg dry wt	< 0.010	< 0.010	-	-	
gamma-BHC (Lindane)	mg/kg dry wt		< 0.010	-		-
cis-Chlordane	mg/kg dry wt	< 0.010	< 0.010	-	-	
trans-Chlordane	mg/kg dry wt	< 0.010	< 0.010	-	-	-
	mg/kg dry wt	< 0.010	< 0.010			-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	< 0.04	-	1	-
2,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	÷.	1.	
4,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	-	-	-
2,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	-	-	-
4,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	-	÷	
2,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	÷	-	-
1,4'-DDT	mg/kg dry wt	< 0.010	< 0.010		-	-
Dieldrin	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Endosulfan I	mg/kg dry wt	< 0.010	< 0.010	-	-	
Endosulfan II	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.010	< 0.010	-	-	
Endrin	mg/kg dry wt	< 0.010	< 0.010	-	-	2
Endrin aldehyde	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Endrin ketone	mg/kg dry wt	< 0.010	< 0.010	-		
leptachlor	mg/kg dry wt	< 0.010	< 0.010			-
eptachlor epoxide	mg/kg dry wt	< 0.010	< 0.010	-		
Hexachlorobenzene	mg/kg dry wt	< 0.010	< 0.010		-	
Methoxychlor	mg/kg dry wt	< 0.010	< 0.010		427	

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

S	Sample Name:	pm	BH202 - 1.0m 28-May-2014 3:39 pm			
Polycyclic Aromatic Hydrocarbo	Lab Number:	1283722.1	1283722.2			
Acenaphthene	mg/kg dry wt	< 0.03	< 0.04	1.71	-	<u> –</u>
Acenaphthylene	mg/kg dry wt	< 0.03	< 0.04		-	8
Anthracene	mg/kg dry wt	< 0.03	< 0.04	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.03	< 0.04		-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.03	< 0.04	-	-	-
Benzo[b]fluoranthene + Benzo[j fluoranthene] mg/kg dry wt	< 0.03	< 0.04	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.03	< 0.04	-	-	-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.03	< 0.04	-	8	-
Chrysene	mg/kg dry wt	< 0.03	< 0.04	-	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.03	< 0.04	-		· ·
Fluoranthene	mg/kg dry wt	< 0.03	< 0.04	-	-	-
Fluorene	mg/kg dry wt	< 0.03	< 0.04	-		
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.03	< 0.04	8	-	-
Naphthalene	mg/kg dry wt	< 0.14	< 0.16		_	-
Phenanthrene	mg/kg dry wt	< 0.03	< 0.04	-		-
Pyrene	mg/kg dry wt	< 0.03	< 0.04		-	-
Total Petroleum Hydrocarbons i	n Soil					
C7 - C9	mg/kg dry wt	< 8	< 10	-	_	-
C10 - C14	mg/kg dry wt	< 20	< 20	-	-	-
C15 - C36	mg/kg dry wt	< 40	< 40	14		-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	< 70			

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.010 - 60 mg/kg dry wt	1-2
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1-2
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082) Tested on dried sample	0.010 - 0.04 mg/kg dry wt	1-2
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1-2
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-2

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

7

Ara Heron BSc (Tech) Client Services Manager - Environmental Division

R J Hill Laboratories Limited | Tel 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand | Web www.hill-labs.co.nz

+64 7 858 2000 +64 7 858 2001 Fax Email mail@hill-labs.co.nz

Page 1 of 4

SPv1

ANALYSIS REPORT

Client: **OPUS** International Consultants Contact: Mr Roger High C/- OPUS International Consultants PO Box 5848 AUCKLAND 1141

Lab No: 1289075 Date Registered: 19-Jun-2014 **Date Reported:** 18-Jul-2014 **Quote No:** 61048 Order No: **Client Reference:** Submitted By: Mr Roger High

Sample Type: Soil

	Sample Name: Lab Number:	BH204 0.1m 05-Jun-2014 1:28 pm 1289075.1	BH204 1.0m 05-Jun-2014 1:29 pm 1289075.2	BH201 0.1m 09-Jun-2014 10:34 am 1289075.4	BH201 1.0m 09-Jun-2014 10:36 am 1289075.5	BH201 10m 09-Jun-2014 10:50 am 1289075.7
Individual Tests						
Dry Matter	g/100g as rcvd	79	78	77	75	77
Heavy metals, screen As,Cd,	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	3	3	3	3	3
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	0.11	< 0.10	0.11
Total Recoverable Chromium	mg/kg dry wt	17	14	7	14	9
Total Recoverable Copper	mg/kg dry wt	15	10	10	15	15
Total Recoverable Lead	mg/kg dry wt	40	7.0	14.2	8.3	16.1
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Recoverable Nickel	mg/kg dry wt	17	8	6	9	11
Total Recoverable Zinc	mg/kg dry wt	25	16	31	17	33
Organochlorine Pesticides Sc	creening in Soil					
Aldrin	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
alpha-BHC	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
beta-BHC	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
delta-BHC	mg/kg dry wt	< 0.010		< 0.010		< 0.010
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
cis-Chlordane	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
trans-Chlordane	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	-	< 0.04		< 0.04
2,4'-DDD	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
4,4'-DDD	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
2,4'-DDE	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
4,4'-DDE	mg/kg dry wt	< 0.010		< 0.010		< 0.010
2,4'-DDT	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
4,4'-DDT	mg/kg dry wt	< 0.010	-	< 0.010	+	< 0.010
Dieldrin	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
Endosulfan I	mg/kg dry wt	< 0.010		< 0.010		< 0.010
Endosulfan II	mg/kg dry wt	< 0.010	-	< 0.010	¥	< 0.010
Endosulfan sulphate	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
Endrin	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
Endrin aldehyde	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
Endrin ketone	mg/kg dry wt	< 0.010	-	< 0.010	-	< 0.010
leptachlor	mg/kg dry wt	< 0.010	-	< 0.010		< 0.010
leptachlor epoxide	mg/kg dry wt	< 0.010	-	< 0.010	_	< 0.010
lexachlorobenzene	mg/kg dry wt	< 0.010		< 0.010	-	< 0.010
Methoxychlor	mg/kg dry wt	< 0.010		< 0.010		< 0.010

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

	ample Name: Lab Number:	BH204 0.1m 05-Jun-2014 1:28 pm 1289075.1	BH204 1.0m 05-Jun-2014 1:29 pm 1289075.2	BH201 0.1m 09-Jun-2014 10:34 am 1289075.4	BH201 1.0m 09-Jun-2014 10:36 am 1289075.5	BH201 10m 09-Jun-2014 10:50 am 1289075.7
Polycyclic Aromatic Hydrocarbo		Soil			1200010.0	1209075.7
Acenaphthene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Acenaphthylene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Anthracene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo[a]anthracene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Benzo[k]fluoranthene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Chrysene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Fluoranthene	mg/kg dry wt	0.03	< 0.03	0.03	< 0.03	< 0.03
Fluorene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Naphthalene	mg/kg dry wt	< 0.14	< 0.14	< 0.14	< 0.15	< 0.15
Phenanthrene	mg/kg dry wt	< 0.03	< 0.03	< 0.03	< 0.03	< 0.03
Pyrene	mg/kg dry wt	0.04	< 0.03	0.04	< 0.03	0.04
Total Petroleum Hydrocarbons in	Soil					
C7 - C9	mg/kg dry wt	< 9	< 9	< 9	< 9	< 9
C10 - C14	mg/kg dry wt	< 20	< 20	< 20	< 20	< 20
C15 - C36	mg/kg dry wt	< 40	< 40	< 40	< 40	< 40
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 70	< 70	< 70	< 70	< 70

	Sample Name: Lab Number:	HA211 0.0m 11-Jun-2014 9:55 am 1289075.17	HA206 0.0m 12-Jun-2014 12:15 pm 1289075.23	HA212a 0.0m 13-Jun-2014 11:00 am 1289075.28	HA211 0.0m [63um Fraction] 1289075.30	HA206 0.0m [63um Fraction] 1289075.31
Individual Tests					1200010.00	1200010.01
Dry Matter	g/100g as rcvd	53	40	55	-	_
Extractable Copper*	mg/kg dry wt	-	· · ·	-	22	20
Extractable Lead*	mg/kg dry wt	-	-	-	24	27
Extractable Zinc*	mg/kg dry wt	-	-	-	89	110
Total Organic Carbon*	g/100g dry wt	0.99	4.0	1.56	-	-
Heavy metals, trace As,Cd,C	r,Cu,Ni,Pb,Zn,Hg					·
Total Recoverable Arsenic	mg/kg dry wt	15.8	7.3	-		
Total Recoverable Cadmium	mg/kg dry wt	0.031	0.089	-	-	
Total Recoverable Chromium	mg/kg dry wt	11.4	14.5	-		
Total Recoverable Copper	mg/kg dry wt	11.7	19.6			
Total Recoverable Lead	mg/kg dry wt	15.9	22	_		
Total Recoverable Mercury	mg/kg dry wt	0.081	0.117	-	~	
Total Recoverable Nickel	mg/kg dry wt	4.9	8.7		14	101
Total Recoverable Zinc	mg/kg dry wt	58	97	-	_	-
Heavy metals, screen As,Cd,	Cr,Cu,Ni,Pb,Zn,Hg					
Total Recoverable Arsenic	mg/kg dry wt	-		18	-	
Total Recoverable Cadmium	mg/kg dry wt	-	_	< 0.10		
Total Recoverable Chromium	mg/kg dry wt	-		22	_	_
Total Recoverable Copper	mg/kg dry wt		-	18	-	
Total Recoverable Lead	mg/kg dry wt	-		29		
Total Recoverable Mercury	mg/kg dry wt	-	- 1	0.10	-	
Total Recoverable Nickel	mg/kg dry wt	-	ŧ	7	-	-
Total Recoverable Zinc	mg/kg dry wt	-	-	95	-	_
Organochlorine Pesticides Sc	reening in Soil					
Aldrin	mg/kg dry wt	-	< 0.010	< 0.010	-	
alpha-BHC	mg/kg dry wt		< 0.010	< 0.010	15.5	-

	Sample Name:	HA211 0.0m	HA206 0.0m	HA212a 0.0m	114044.0.0-	114000 0 0
	Sample Name:	11-Jun-2014 9:55 am	HA206 0.0m 12-Jun-2014 12:15 pm	HA212a 0.0m 13-Jun-2014	HA211 0.0m [63um Fraction]	HA206 0.0m [63um Fraction]
	Lab Number:	1289075.17	1289075.23	11:00 am 1289075.28	1289075.30	1289075.31
Organochlorine Pesticides Sci	reening in Soil					
beta-BHC	mg/kg dry wt	-	< 0.010	< 0.010		2
delta-BHC	mg/kg dry wt	-	< 0.010	< 0.010		-
gamma-BHC (Lindane)	mg/kg dry wt	-	< 0.010	< 0.010		-
cis-Chlordane	mg/kg dry wt	-	< 0.010	< 0.010	-	_
trans-Chlordane	mg/kg dry wt	-	< 0.010	< 0.010		-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	-	< 0.04	< 0.04	-	(e
2,4'-DDD	mg/kg dry wt	-	< 0.010	< 0.010	-	
4,4'-DDD	mg/kg dry wt		< 0.010	< 0.010		-
2,4'-DDE	mg/kg dry wt	-	< 0.010	< 0.010	-	-
4,4'-DDE	mg/kg dry wt	1.	< 0.010	< 0.010	-	
2,4'-DDT	mg/kg dry wt	-	< 0.010	< 0.010	-	-
4,4'-DDT	mg/kg dry wt		< 0.010	< 0.010	-	-
Dieldrin	mg/kg dry wt	-	< 0.010	< 0.010		-
Endosulfan I	mg/kg dry wt	-	< 0.010	< 0.010	()=(-
Endosulfan II	mg/kg dry wt	-	< 0.010	< 0.010	-	_
Endosulfan sulphate	mg/kg dry wt	-	< 0.010	< 0.010	-	
Endrin	mg/kg dry wt	-	< 0.010	< 0.010		-
Endrin aldehyde	mg/kg dry wt	-	< 0.010	< 0.010		-
Endrin ketone	mg/kg dry wt	·	< 0.010	< 0.010		-
Heptachlor	mg/kg dry wt	· · · · ·	< 0.010	< 0.010		-
Heptachlor epoxide	mg/kg dry wt	_	< 0.010	< 0.010	-	5
Hexachlorobenzene	mg/kg dry wt	-	< 0.010	< 0.010	-	-
Methoxychlor	mg/kg dry wt		< 0.010	< 0.010	-	-
Polycyclic Aromatic Hydrocarbo			< 0.010	< 0.010		-
Acenaphthene	mg/kg dry wt	< 0.05	< 0.11			
Acenaphthylene	mg/kg dry wt	< 0.05		< 0.05		-
Anthracene			< 0.11	< 0.05	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.05	< 0.11	< 0.05		-
and the second sec	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	-
Benzo[b]fluoranthene + Benzo[j fluoranthene		< 0.05	< 0.11	< 0.05	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.05	< 0.11	< 0.05		-
Benzo[k]fluoranthene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	· · · ·	
Chrysene	mg/kg dry wt	< 0.05	< 0.11	< 0.05		
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	-
Fluoranthene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	•	
Fluorene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	8 :
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.05	< 0.11	< 0.05		-
Naphthalene	mg/kg dry wt	< 0.3	< 0.6	< 0.3	-	-
Phenanthrene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	
Pyrene	mg/kg dry wt	< 0.05	< 0.11	< 0.05	-	-
Tributyl Tin Trace in Soil sample						
Dibutyltin (as Sn)	mg/kg dry wt	-	< 0.005	< 0.005	-	-
Monobutyltin (as Sn)	mg/kg dry wt	-	< 0.007	< 0.007	-	-
Tributyltin (as Sn)	mg/kg dry wt	-	< 0.004	< 0.004	-	-
Triphenyltin (as Sn)	mg/kg dry wt	-	< 0.003	< 0.003		-
Total Petroleum Hydrocarbons i	n Soil					
C7 - C9	mg/kg dry wt	< 13	< 40	< 13		
C10 - C14	mg/kg dry wt	< 30	< 70	< 30	-	_
C15 - C36	mg/kg dry wt	< 50	< 140	< 50	-	
Fotal hydrocarbons (C7 - C36)	mg/kg dry wt	< 90	< 300	< 90		-

	Sample Name:	HA212a 0.0m [63um Fraction]				
	Lab Number:	1289075.32				
Individual Tests						······
Extractable Copper*	mg/kg dry wt	19.0	÷	1	-	
Extractable Lead*	mg/kg dry wt	28	-	-	-	_
Extractable Zinc*	mg/kg dry wt	105				

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Soil			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-2, 4-5, 7, 17, 23, 28
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.010 - 60 mg/kg dry wt	1-2, 4-5, 7, 17, 23, 28
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1-2, 4-5, 7, 28
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082) Tested on dried sample	0.010 - 0.04 mg/kg dry wt	1, 4, 7, 23, 28
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry) , gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1-2, 4-5, 7, 17, 23, 28
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-2, 4-5, 7, 17, 23, 28
Sample Type: Sediment		Construction of the	
Test	Method Description	Default Detection Limit	Sample No
Heavy metals, trace As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, trace level.	0.010 - 0.4 mg/kg dry wt	17, 23
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	23, 28
ARC 2M HCI Extraction*	<63µm Sieved Fraction, extracted with 2M HCI. Solid:Liquid 1:50 w/v. ARC Tech Publication No. 47, 1994.	-	30-32
Sieving through 63 um sieve, no gravimetric result*	<63µm Wet Sieved with no gravimetric determination.	-	17, 23, 28
Extractable Copper*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	1.0 mg/kg dry wt	30-32
Extractable Lead*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	0.2 mg/kg dry wt	30-32
Extractable Zinc*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	2 mg/kg dry wt	30-32
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	17, 23, 28

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

J

Ara Heron BSc (Tech) Client Services Manager - Environmental Division

R J Hill Laboratories Limited Tel 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand

+64 7 858 2000 +64 7 858 2001 Email mail@hill-labs.co.nz Web www.hill-labs.co.nz

Page 1 of 6

Fax

ANALYSIS REPORT

Client: OPUS International Consultants Contact: Mr Roger High C/- OPUS International Consultants PO Box 5848 AUCKLAND 1141

Lab No: 1293375 SPv1 **Date Registered:** 01-Jul-2014 **Date Reported:** 21-Jul-2014 **Quote No:** 61048 **Order No: Client Reference:** Submitted By: Mr Roger High

Sample Type: Soil

	Sample Name:	HA 259 0.1m 23-Jun-2014 12:50 pm	HA260 0.01-0.05m 23-Jun-2014 1:56 pm	HA260 1.0m 23-Jun-2014 1:58 pm		
	Lab Number:	1293375.6	1293375.8	1293375.9		
Individual Tests		· · · · ·				
Dry Matter	g/100g as rcvd	65	62	72	-	-
Heavy metals, screen As,Cd,	Cr,Cu,Ni,Pb,Zn,Hg				······	
Total Recoverable Arsenic	mg/kg dry wt	3	4	5		_
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	< 0.10	-	_
Total Recoverable Chromium		8	8	17		-
Total Recoverable Copper	mg/kg dry wt	12	12	25	-	
Total Recoverable Lead	mg/kg dry wt	12.7	11.4	14.6		
Total Recoverable Mercury	mg/kg dry wt	< 0.10	< 0.10	< 0.10	-	
Total Recoverable Nickel	mg/kg dry wt	3	3	27	-	
Total Recoverable Zinc	mg/kg dry wt	25	35	32	19 19	-
Organochlorine Pesticides So					-10/	
Aldrin	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
alpha-BHC	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
beta-BHC	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
delta-BHC	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
cis-Chlordane	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
trans-Chlordane	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
2,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
4,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
2,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
4,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
2,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
4,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
Dieldrin	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
Endosulfan I	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
Endosulfan II	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
Endrin	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	
Endrin aldehyde	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
Endrin ketone	mg/kg dry wt	< 0.010	< 0.010	< 0.010	1 .	-
Heptachlor	mg/kg dry wt	< 0.010	< 0.010	< 0.010		-
Heptachlor epoxide	mg/kg dry wt	< 0.010	< 0.010	< 0.010		
Hexachlorobenzene	mg/kg dry wt	< 0.010	< 0.010	< 0.010	-	

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which are not accredited.

Sample Type: Soil	Sample Name	HA 259 0.1m	HADEO			
	Sample Name:	23-Jun-2014 12:50 pm	HA260 0.01-0.05m 23-Jun-2014 1:56	HA260 1.0m 23-Jun-2014 1:58 pm		
			pm	. P		
	Lab Number:	1293375.6	1293375.8	1293375.9		
Organochlorine Pesticides Scre	eening in Soil					
Methoxychlor	mg/kg dry wt	< 0.010	< 0.010	< 0.010	ű.	-
Polycyclic Aromatic Hydrocarbo	ons Screening in S	Soil				
Acenaphthene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	<u> </u>	-
Acenaphthylene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	:e	-
Anthracene	mg/kg dry wt	< 0.04	< 0.04	< 0.04		
Benzo[a]anthracene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.04	< 0.04	< 0.04		-
3enzo[b]fluoranthene + Benzo[j́ luoranthene] mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	
Benzo[k]fluoranthene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	5 .	-
Chrysene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Fluoranthene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	
Fiuorene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
ndeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Naphthalene	mg/kg dry wt	< 0.18	< 0.17	< 0.16	-	
Phenanthrene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	-
Pyrene	mg/kg dry wt	< 0.04	< 0.04	< 0.04	-	
Total Petroleum Hydrocarbons i	in Soil			i		
C7 - C9	mg/kg dry wt	< 11	< 11	< 10	(iii)	_
C10 - C14	mg/kg dry wt	< 30	< 30	< 20	- 2	-
C15 - C36	mg/kg dry wt	< 50	< 50	< 40	-	-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 80	< 80	< 70	-	-
Sample Type: Sediment			TRUE DESCRIPTION			
	ample Name:	HA/S213 0.0m	HA217 0.0m	HA210a 0.0m	HA210a 0.5m	
		13-Jun-2014 2:30 pm	24-Jun-2014 10:10 am	24-Jun-2014 11:30 am	24-Jun-2014 11:30 am	HA215 0.0m 25-Jun-2014 10:10 am
	Lab Number:	1293375.5	1293375.11	1293375.13	1293375.14	1293375.16
ndividual Tests						
Dry Matter	g/100g as rcvd	50	43	37	68	52
otal Organic Carbon*						4.04
	g/100g dry wt	1.26	1.41	2.2	-	1.51
leavy metals, screen As,Cd,Cr,		1.26	1.41	2.2	-	1.31
		1.26	1.41	8	<2	
otal Recoverable Arsenic	,Cu,Ni,Pb,Zn,Hg				- < 2 < 0.10	16
otal Recoverable Arsenic otal Recoverable Cadmium	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt	11	19	8		16 < 0.10
Heavy metals, screen As,Cd,Cr, otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	11 < 0.10	19 < 0.10	8 < 0.10	< 0.10	16
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt	11 < 0.10 16	19 < 0.10 20	8 < 0.10 18	< 0.10 8	16 < 0.10 17 17
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17	19 < 0.10 20 19	8 < 0.10 18 19	< 0.10 8 7	16 < 0.10 17 17 29
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27	19 < 0.10 20 19 30	8 < 0.10 18 19 24	< 0.10 8 7 4.6	16 < 0.10 17 17 29 0.11
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury	Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10	19 < 0.10 20 19 30 0.11	8 < 0.10 18 19 24 0.11	< 0.10 8 7 4.6 < 0.10	16 < 0.10 17 17 29
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mickel otal Recoverable Zinc organochlorine Pesticides Scree	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc rganochlorine Pesticides Screet	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt ening in Soil	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc organochlorine Pesticides Screet Idrin pha-BHC	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt ening in Soil mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc otal Recoverable Zinc otal Recoverable Zinc otal Recoverable Arce otal Recoverable Cinc otal Recoverable Recoverable Recoverable Cinc otal Recoverable Recoverable Recoverable Cinc otal Recoverable Recoverable Recoverable Recoverable Cinc otal Recoverable Recov	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt ening in Soil mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc irganochlorine Pesticides Screet Idrin pha-BHC eta-BHC elta-BHC	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt ening in Soil mg/kg dry wt mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc organochlorine Pesticides Scree Idrin pha-BHC eta-BHC elta-BHC amma-BHC (Lindane)	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt ening in Soil mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Cadmium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc Organochlorine Pesticides Scree Idrin pha-BHC eta-BHC eta-BHC eta-BHC s-Chlordane	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Cadmium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc Organochlorine Pesticides Scree Idrin Ipha-BHC eta-BHC elta-BHC elta-BHC amma-BHC (Lindane) s-Chlordane ans-Chlordane otal Chlordane [(cis+trans)*	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc Organochlorine Pesticides Scree Idrin Ipha-BHC eta-BHC eta-BHC eta-BHC eta-BHC amma-BHC (Lindane) s-Chlordane ans-Chlordane otal Chlordane [(cis+trans)* 00/42]	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt ening in Soil mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium otal Recoverable Copper otal Recoverable Lead otal Recoverable Mercury otal Recoverable Mercury otal Recoverable Nickel otal Recoverable Zinc Drganochlorine Pesticides Screet Idrin Ipha-BHC eta-BHC eta-BHC eta-BHC eta-BHC amma-BHC (Lindane) s-Chlordane ans-Chlordane otal Chlordane [(cis+trans)* 00/42] 4'-DDD	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt ening in Soil mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8
otal Recoverable Arsenic otal Recoverable Cadmium otal Recoverable Chromium	,Cu,Ni,Pb,Zn,Hg mg/kg dry wt mg/kg dry wt ening in Soil mg/kg dry wt mg/kg dry wt	11 < 0.10 16 17 27 0.10 7	19 < 0.10 20 19 30 0.11 7	8 < 0.10 18 19 24 0.11 7 91 < 0.010 < 0.010	< 0.10 8 7 4.6 < 0.10 2	16 < 0.10 17 17 29 0.11 8

	Sample Name:	HA/S213 0.0m 13-Jun-2014 2:30	HA217 0.0m 24-Jun-2014	HA210a 0.0m 24-Jun-2014	HA210a 0.5m 24-Jun-2014	HA215 0.0m 25-Jun-2014
		pm	10:10 am	11:30 am	11:30 am	10:10 am
	Lab Number:	1293375.5	1293375.11	1293375.13	1293375.14	1293375.16
Organochlorine Pesticides Sc	reening in Soil					
4,4'-DDE	mg/kg dry wt	-		< 0.010	-	-
2,4'-DDT	mg/kg dry wt	-		< 0.010	-	-
4,4'-DDT	mg/kg dry wt	-		< 0.010		
Dieldrin	mg/kg dry wt	-	-	< 0.010	<u>(</u>	
Endosulfan I	mg/kg dry wt	-		< 0.010	-	
Endosulfan II	mg/kg dry wt	-	-	< 0.010	······································	-
Endosulfan sulphate	mg/kg dry wt		-	< 0.010		
Endrin	mg/kg dry wt	-	-	< 0.010	-	-
Endrin aldehyde	mg/kg dry wt		-	< 0.010		-
Endrin ketone	mg/kg dry wt	-	-	< 0.010	-	
Heptachlor	mg/kg dry wt	-		< 0.010		
Heptachlor epoxide	mg/kg dry wt	_		< 0.010		
Hexachlorobenzene	mg/kg dry wt	-		< 0.010		
Methoxychlor	mg/kg dry wt	-	-	< 0.010		
Polycyclic Aromatic Hydrocarb			R	\$0.010		-
Acenaphthene			- 0.00	- 0.00		
	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Acenaphthylene Anthracene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Benzo[a]anthracene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	0.04
Benzo[b]fluoranthene + Benzo[fluoranthene	j] mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	0.05
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	0.05
Benzo[k]fluoranthene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Chrysene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Fluoranthene	mg/kg dry wt	0.05	< 0.06	< 0.06	< 0.04	0.09
Fluorene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	< 0.05
Naphthalene	mg/kg dry wt	< 0.3	< 0.3	< 0.3	< 0.16	< 0.3
Phenanthrene	mg/kg dry wt	< 0.05	< 0.06	< 0.06	< 0.04	0.06
Pyrene	mg/kg dry wt	0.06	0.07	0.07	< 0.04	
Tributyl Tin Trace in Soil samp			0.07	0.07	< 0.04	0.12
Dibutyltin (as Sn)	mg/kg dry wt			10.005		
Monobutyltin (as Sn)		-	-	< 0.005	-	-
Tributyltin (as Sn)	mg/kg dry wt	-		< 0.007		-
Triphenyltin (as Sn)	mg/kg dry wt	-	-	< 0.004	-	-
	mg/kg dry wt	-	(t)	< 0.003	-	
Total Petroleum Hydrocarbons						
C7 - C9	mg/kg dry wt	< 14	< 16	< 18	< 10	< 13
C10 - C14	mg/kg dry wt	< 30	< 40	< 40	< 20	< 30
C15 - C36	mg/kg dry wt	< 60	< 70	< 80	< 40	< 50
Fotal hydrocarbons (C7 - C36)	mg/kg dry wt	< 100	< 110	< 130	< 70	< 90
S	ample Name:	HA214a 0.0m 25-Jun-2014	HA/S213 0.0m [63um Fraction]	HA217 0.0m [63um Fraction]	HA210a 0.0m [63um Fraction]	HA215 0.0m [63um Fraction]
		12:21 pm	4000075 00	400000000000000000000000000000000000000		
ndividual Tests	Lab Number:	1293375.20	1293375.22	1293375.23	1293375.24	1293375.25
	- 400					
Dry Matter	g/100g as rcvd	47	-			-
xtractable Copper*	mg/kg dry wt	-	16.3	18.2	15.7	19.5
Extractable Lead*	mg/kg dry wt	-	26	27	24	29
xtractable Zinc*	mg/kg dry wt	-	93	101	84	110
otal Organic Carbon*	g/100g dry wt	1.54		-	-	-

S	ample Name:	HA214a 0.0m 25-Jun-2014	HA/S213 0.0m [63um Fraction]	HA217 0.0m [63um Fraction]	HA210a 0.0m [63um Fraction]	HA215 0.0m [63um Fraction]
	Lab Number:	12:21 pm 1293375.20	1293375.22	1293375.23	1293375.24	1293375.25
Heavy metals, screen As,Cd,Ci						
Total Recoverable Cadmium	mg/kg dry wt	< 0.10			-	1
Total Recoverable Chromium	mg/kg dry wt	21		-		
Total Recoverable Copper	mg/kg dry wt	19	50 _	-		-
Total Recoverable Lead	mg/kg dry wt	32			-	
Total Recoverable Mercury	mg/kg dry wt	0.13			-	
Total Recoverable Nickel	mg/kg dry wt	8		-		-
Total Recoverable Zinc	mg/kg dry wt	119	-		. .	-
		119	Tr.		-	-
Organochlorine Pesticides Scre						
Aldrin	mg/kg dry wt	< 0.010	8	-	-	-
alpha-BHC	mg/kg dry wt	< 0.010			-	-
beta-BHC	mg/kg dry wt	< 0.010		-	-	8
delta-BHC	mg/kg dry wt	< 0.010	-	÷	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	1	-	-	-
cis-Chlordane	mg/kg dry wt	< 0.010	-	8 7 6	-	-
trans-Chlordane	mg/kg dry wt	< 0.010	-	-	-	-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	-	20	8	-
2,4'-DDD	mg/kg dry wt	< 0.010	-	÷.		-
4,4'-DDD	mg/kg dry wt	< 0.010	-		-	-
2,4'-DDE	mg/kg dry wt	< 0.010			-	-
4,4'-DDE	mg/kg dry wt	< 0.010	2		-	
2,4'-DDT	mg/kg dry wt	< 0.010		-	-	
4,4'-DDT	mg/kg dry wt	< 0.010		-		
Dieldrin	mg/kg dry wt	< 0.010			-	
Endosulfan I	mg/kg dry wt	< 0.010				-
Endosulfan II	mg/kg dry wt	< 0.010			-	
Endosulfan sulphate	mg/kg dry wt	< 0.010		-		
Endrin			-		-	-
Endrin aldehyde	mg/kg dry wt	< 0.010				-
	mg/kg dry wt	< 0.010	-	-	-	-
Endrin ketone	mg/kg dry wt	< 0.010	-		-	-
Heptachlor	mg/kg dry wt	< 0.010	1	÷	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.010	8	72	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.010	.		-	-
Methoxychlor	mg/kg dry wt	< 0.010		-	-	(H)
Polycyclic Aromatic Hydrocarbor	ns Screening in So	li				
Acenaphthene	mg/kg dry wt	< 0.05			-3	
Acenaphthylene	mg/kg dry wt	< 0.05	-	-		
Anthracene	mg/kg dry wt	0.06	2	-	-	-
Benzo[a]anthracene	mg/kg dry wt	0.13	-	-	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.19	-		_	_
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	0.21	-	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	0.15	-		-	_
Benzo[k]fluoranthene	mg/kg dry wt	0.10			-	_
Chrysene	mg/kg dry wt	0.19			_	_
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.05	_		_	
Fluoranthene	mg/kg dry wt	0.43				-
Fluorene	mg/kg dry wt	< 0.05			-	-
ndeno(1,2,3-c,d)pyrene				-	-	
and the second	mg/kg dry wt	0.08		-	-	24
Naphthalene	mg/kg dry wt	< 0.3		-		()
Phenanthrene	mg/kg dry wt	0.33	1 - 1		-	-
Pyrene	mg/kg dry wt	0.50	3	-	-	-
Fributyl Tin Trace in Soil sample	s by GCMS					

	Sample Name:	HA214a 0.0m 25-Jun-2014	HA/S213 0.0m [63um Fraction]	HA217 0.0m [63um Fraction]	HA210a 0.0m [63um Fraction]	HA215 0.0m [63um Fraction]
	Lab Number:	12:21 pm 1293375.20	1293375.22	1293375.23	1293375.24	
Tributyl Tin Trace in Soil sam			120001 0.22	1200070.20	1293373.24	1293375.25
Monobutyltin (as Sn)	mg/kg dry wt	< 0.007	Ţ.	_		
Tributyltin (as Sn)	mg/kg dry wt	< 0.004) - 1	3 6 1	-
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	-	-		
Total Petroleum Hydrocarbon	s in Soil					
C7 - C9	mg/kg dry wt	< 14			-	
C10 - C14	mg/kg dry wt	< 30	-	-		
C15 - C36	mg/kg dry wt	< 60	-		-	-
Total hydrocarbons (C7 - C36) mg/kg dry wt	< 100	ŧ.		-	-
,	Sample Name:	HA214a 0.0m [63um Fraction]				
	Lab Number:	1293375.26				
Individual Tests						
Extractable Copper*	mg/kg dry wt	18.7	-	e.	2	_
Extractable Lead*	mg/kg dry wt	28	-	-	-	_
Extractable Zinc*	mg/kg dry wt	105	200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 - 200 3	_		And see the

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Sample No
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082) Tested on dried sample	0.010 - 0.04 mg/kg dry wt	6, 8-9, 13, 20
Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	5-6, 8-9, 11, 13-14, 16, 20
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.010 - 60 mg/kg dry wt	5-6, 8-9, 11, 13-14, 16, 20
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	5-6, 8-9, 11, 13-14, 16, 20
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	13, 20
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry) , gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	5-6, 8-9, 11, 13-14, 16, 20
ARC 2M HCI Extraction*	<63µm Sieved Fraction, extracted with 2M HCI. Solid:Liquid 1:50 w/v. ARC Tech Publication No. 47, 1994.	-	22-26
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	5-6, 8-9, 11, 13-14, 16, 20
Sieving through 63 um sieve, no gravimetric result*	<63µm Wet Sieved with no gravimetric determination.	-	5, 11, 13, 16, 20
Extractable Copper*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	1.0 mg/kg dry wt	22-26
Extractable Lead*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	0.2 mg/kg dry wt	22-26
Extractable Zinc*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	2 mg/kg dry wt	22-26
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	5, 11, 13, 16, 20

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

Ara Heron BSc (Tech) Client Services Manager - Environmental Division

R J Hill Laboratories LimitedTel1 Clyde StreetFaxPrivate Bag 3205EmaHamilton 3240, New ZealandWet

 Tel
 +64 7 858 2000

 Fax
 +64 7 858 2001

 Email
 mail@hill-labs.co.nz

 Web
 www.hill-labs.co.nz

Page 1 of 4

ANALYSIS REPORT

Client:	OPUS International Consultants	Lab No:	1297663	SPv1
Contact:	Mr Roger High	Date Registered:		0
	C/- OPUS International Consultants	Date Reported:	04-Aug-2014	
	PO Box 5848	Quote No:	61048	
	AUCKLAND 1141	Order No:		
		Client Reference:		
		Submitted By:	Tom Van Deelen	1

Sample Type: Soil

	Sample Name:	HA266 0.1m	BH251 0.1m			
		02-Jul-2014 11:18 am	5 03-Jul-2014 11:00			
	Lab Number:	1297663.11	am 1297663.17			
Individual Tests			1207000.17	·		
Dry Matter	g/100g as rcvd	56	78			
Heavy metals, screen As,Cd			10			
Total Recoverable Arsenic	mg/kg dry wt	11	6			
Total Recoverable Cadmium	mg/kg dry wt	0.24		-	-	-
Total Recoverable Chromium		18	0.37		-	-
Total Recoverable Copper	mg/kg dry wt	32	55	-	-	-
Total Recoverable Lead		32 24	67	-	¥	-
Total Recoverable Mercury	mg/kg dry wt		130	-	-	-
Total Recoverable Nickel	mg/kg dry wt	< 0.10	< 0.10	.	-	-
Total Recoverable Zinc	mg/kg dry wt	26	42	-	-	-
	mg/kg dry wt	200	123	-	-	-
Organochlorine Pesticides So						
Aldrin	mg/kg dry wt	< 0.010	< 0.010	-	9 2 1	-
alpha-BHC	mg/kg dry wt	< 0.010	< 0.010	-	-	-
beta-BHC	mg/kg dry wt	< 0.010	< 0.010	-	-	-
delta-BHC	mg/kg dry wt	< 0.010	< 0.010	-	-	-
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	< 0.010	-	-	-
cis-Chlordane	mg/kg dry wt	< 0.010	< 0.010	10.	-	-
trans-Chlordane	mg/kg dry wt	< 0.010	< 0.010	~	-	-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.04	< 0.04	-		-
2,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	-		
4,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	-	-	
2,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	-	-	
4,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	-	_	Manage and any
2,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	-		
4,4'-DDT	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Dieldrin	mg/kg dry wt	< 0.010	< 0.010	-		
Endosulfan I	mg/kg dry wt	< 0.010	< 0.010			
Endosulfan II	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.010	< 0.010	_	-	-
Endrin	mg/kg dry wt	< 0.010	< 0.010		(1) A state of the state of	
Endrin aldehyde	mg/kg dry wt	< 0.010	< 0.010		-	-
Endrin ketone	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Heptachlor	mg/kg dry wt	< 0.010	< 0.010	-		-
Heptachlor epoxide	mg/kg dry wt	< 0.010			-	-
Hexachlorobenzene	mg/kg dry wt	< 0.010	< 0.010	-		-
Methoxychlor	and the second		< 0.010	-		-
and a roxy of nor	mg/kg dry wt	< 0.010	< 0.010	-	-	-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

Sample Type: Soil						
Sa	ample Name:	HA266 0.1m 02-Jul-2014 11:15	BH251 0.1m 03-Jul-2014 11:00			
		am	am			
	Lab Number:	1297663.11	1297663.17			
Polycyclic Aromatic Hydrocarbor						
Acenaphthene	mg/kg dry wt	< 0.04	< 0.03	-		_
Acenaphthylene	mg/kg dry wt	< 0.04	< 0.03		-	-
Anthracene	mg/kg dry wt	< 0.04	< 0.03	-	-	-
Benzo[a]anthracene	mg/kg dry wt	< 0.04	< 0.03		-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.04	< 0.03	-	-	-
Benzo[b]fluoranthene + Benzo[j] fluoranthene	mg/kg dry wt	< 0.04	< 0.03	-	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.04	< 0.03	-	-	_
Benzo[k]fluoranthene	mg/kg dry wt	< 0.04	< 0.03	-	-	_
Chrysene	mg/kg dry wt	< 0.04	< 0.03	_		_
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.04	< 0.03	-	-	-
Fluoranthene	mg/kg dry wt	< 0.04	0.03	_	_	_
Fluorene	mg/kg dry wt	< 0.04	< 0.03	_	_	_
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.04	< 0.03	22	_	
Naphthalene	mg/kg dry wt	< 0.2	< 0.15		-	-
Phenanthrene	mg/kg dry wt	< 0.04	< 0.03	_	_	-
Pyrene	mg/kg dry wt	< 0.04	0.04	-	-	-
Total Petroleum Hydrocarbons in	Soil					
C7 - C9	mg/kg dry wt	< 12	< 9		<u>_</u>	
C10 - C14	mg/kg dry wt	< 30	< 20	-		52 22
C15 - C36	mg/kg dry wt	< 50	< 40	-		-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 90	< 70	-	-	

	Sample Name:	HA208 0.0m 01-Jul-2014 8:41 am	HA209 0.0m 26-Jun-2014 3:37 pm	HA208 0.0m [63um Fraction]		
	Lab Number:	1297663.1	1297663.5	1297663.25		
Individual Tests						
Dry Matter	g/100g as rcvd	28	30	-	-	1
Extractable Copper*	mg/kg dry wt	-		18.8	-	-
Extractable Lead*	mg/kg dry wt	-	-	32	-	-
Extractable Zinc*	mg/kg dry wt	-		99	-	-
Total Organic Carbon*	g/100g dry wt	4.2	-	-	-	-
Heavy metals, screen As,Cd,	Cr,Cu,Ni,Pb,Zn,Hg		· · · · · · · · · · · · · · · · · · ·			
Total Recoverable Arsenic	mg/kg dry wt	8	8	-		
Total Recoverable Cadmium	mg/kg dry wt	< 0.10	< 0.10	-	-	_
Total Recoverable Chromium	mg/kg dry wt	25	28		-	
Total Recoverable Copper	mg/kg dry wt	26	27	alaan oo ah	lana ina ang kana kana kana kana kana kana kan	-
Total Recoverable Lead	mg/kg dry wt	31	34			
Total Recoverable Mercury	mg/kg dry wt	< 0.10	0.20	-	-	-
Total Recoverable Nickel	mg/kg dry wt	10	10		_	-
Total Recoverable Zinc	mg/kg dry wt	117	125	-	-	-
Organochlorine Pesticides So	reening in Soil					
Aldrin	mg/kg dry wt	< 0.010	< 0.010			
alpha-BHC	mg/kg dry wt	< 0.010	< 0.010			-
peta-BHC	mg/kg dry wt	< 0.010	< 0.010	-		
delta-BHC	mg/kg dry wt	< 0.010	< 0.010		-	
gamma-BHC (Lindane)	mg/kg dry wt	< 0.010	< 0.010	_	-	-
cis-Chlordane	mg/kg dry wt	< 0.010	< 0.010	-		
rans-Chlordane	mg/kg dry wt	< 0.010	< 0.010	-		-
Fotal Chlordane [(cis+trans)* 00/42]	mg/kg dry wt	< 0.04	< 0.04	-	-	-
2,4'-DDD	mg/kg dry wt	< 0.010	< 0.010	-	_	-
,4'-DDD	mg/kg dry wt	< 0.010	< 0.010		-	-
2,4'-DDE	mg/kg dry wt	< 0.010	< 0.010	_	2	

	Sample Name:	HA208 0.0m	HA209 0.0m	HA208 0.0m		
	oumpie Mame.	01-Jul-2014 8:41	26-Jun-2014 3:37	[63um Fraction]		
	Lab Number:	am 1297663.1	pm 1297663.5	1297663.25		
Organochlorine Pesticides Sc		1207000.1	1237003.3	1297003.25		
4,4'-DDE	mg/kg dry wt	< 0.010	< 0.010			
2,4'-DDT	mg/kg dry wt	< 0.010		-		-
4,4'-DDT	mg/kg dry wt		< 0.010	-		
Dieldrin	· · · · · · · · · · · · · · · · · · ·	< 0.010	< 0.010	-	-	-
Endosulfan I	mg/kg dry wt	< 0.010	< 0.010	-	-	-
	mg/kg dry wt	< 0.010	< 0.010		-	-
Endosulfan II	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Endosulfan sulphate	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Endrin	mg/kg dry wt	< 0.010	< 0.010	-	14	-
Endrin aldehyde	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Endrin ketone	mg/kg dry wt	< 0.010	< 0.010	-	12	-
Heptachlor	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Heptachlor epoxide	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Hexachlorobenzene	mg/kg dry wt	< 0.010	< 0.010	-	-	-
Methoxychior	mg/kg dry wt	< 0.010	< 0.010	-	-	_
Polycyclic Aromatic Hydrocarb	ons Screening in S	oil				
Acenaphthene	mg/kg dry wt	< 0.08	< 0.08	_	-	
Acenaphthylene	mg/kg dry wt	< 0.08	< 0.08	-	_	
Anthracene	mg/kg dry wt	< 0.08	< 0.08	_	-	_
Benzo[a]anthracene	mg/kg dry wt	< 0.08	< 0.08	_	-	_
Benzo[a]pyrene (BAP)	mg/kg dry wt	< 0.08	< 0.08	-		-
Benzo[b]fluoranthene + Benzo[fluoranthene		< 0.08	< 0.08	2000 2000	-	
Benzo[g,h,i]perylene	mg/kg dry wt	< 0.08	< 0.08	-	-	
Benzo[k]fluoranthene	mg/kg dry wt	< 0.08	< 0.08	-	-	
Chrysene	mg/kg dry wt	< 0.08	< 0.08	2		-
Dibenzo[a,h]anthracene	mg/kg dry wt	< 0.08	< 0.08	-	-	
Fluoranthene	mg/kg dry wt	< 0.08	< 0.08	_	_	_
Fluorene	mg/kg dry wt	< 0.08	< 0.08		-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	< 0.08	< 0.08		-	-
Naphthalene	mg/kg dry wt	< 0.4	< 0.4	-	-	-
Phenanthrene	mg/kg dry wt	< 0.08	< 0.08	5	-	-
Pyrene	mg/kg dry wt	< 0.08		-		-
Tributyl Tin Trace in Soil sampl		~ 0.00	< 0.08	-	-	
Dibutyltin (as Sn)		< 0.005				
	mg/kg dry wt	< 0.005	< 0.005	Ξ.	-	-
Monobutyltin (as Sn)	mg/kg dry wt	< 0.007	< 0.007	-	-	-
Tributyltin (as Sn)	mg/kg dry wt	< 0.004	< 0.004		-	-
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	< 0.003	-	-	-
Total Petroleum Hydrocarbons i						
C7 - C9	mg/kg dry wt	< 30	< 30	-		-
C10 - C14	mg/kg dry wt	< 50	< 50	-	-	-
C15 - C36	mg/kg dry wt	< 100	< 90	-	-	-
otal hydrocarbons (C7 - C36)	mg/kg dry wt	< 170	< 160		-	

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Test	Method Description	Default Detection Limit	Sample No
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1, 5, 11, 1
TPH Oil Industry Profile + PAHscreen	Sonication in DCM extraction, SPE cleanup, GC-FID & GC-MS analysis. Tested on as received sample. US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:5786,2805,10734;2695]	0.010 - 60 mg/kg dry wt	1, 5, 11, 17

Sample Type: Sediment			
Test	Method Description	Default Detection Limit	Sample No
Heavy metals, screen As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, screen level.	0.10 - 4 mg/kg dry wt	1, 5, 11, 17
Organochlorine Pesticides Screening in Soil	Sonication extraction, SPE cleanup, dual column GC-ECD analysis (modified US EPA 8082) Tested on dried sample	0.010 - 0.04 mg/kg dry wt	1, 5, 11, 17
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	1, 5
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry), gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1, 5, 11, 17
ARC 2M HCI Extraction*	<63µm Sieved Fraction, extracted with 2M HCl. Solid:Liquid 1:50 w/v. ARC Tech Publication No. 47, 1994.	-	25
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.		1, 5, 11, 17
Sieving through 63 um sieve, no gravimetric result*	<63µm Wet Sieved with no gravimetric determination.	-	1
Extractable Copper*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	1.0 mg/kg dry wt	25
Extractable Lead*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	0.2 mg/kg dry wt	25
Extractable Zinc*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	2 mg/kg dry wt	25
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	1

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

Ara Heron BSc (Tech) Client Services Manager - Environmental Division

R J Hill Laboratories Limited 1 Clyde Street Tel Private Bag 3205 Hamilton 3240, New Zealand | Web www.hill-labs.co.nz

+64 7 858 2000 Fax +64 7 858 2001 Email mail@hill-labs.co.nz

Page 1 of 2

ANALYSIS REPORT

Client: OPUS International Consultants Contact: Josh Burton C/- OPUS International Consultants PO Box 5848 AUCKLAND 1141

Lab No:	1308993	SPv1
Date Registered:	07-Aug-2014	
Date Reported:	19-Aug-2014	
Quote No:	_	
Order No:		
Client Reference:	NH2 - 1-C0846.20	
Submitted By:	Josh Burton	

Sample Type: Aqueous

	Sample Name:	BH201	BH265			
	Leb Number	06-Aug-2014	29-Jul-2014			
Individual Tests	Lab Number:	1308993.1	1308993.2			
Dissolved Mercury	g/m³	< 0.00008	< 0.00008	-	5 4 1	-
Heavy metals, dissolved, diges		r,Cu,Ni,Pb,Zn				
Dissolved Arsenic	g/m³	< 0.011	< 0.0011		(-)	-
Dissolved Cadmium	g/m³	< 0.00053	< 0.000053	-		-
Dissolved Chromium	g/m³	< 0.0053	< 0.00053	-	-	-
Dissolved Copper	g/m³	< 0.0053	< 0.00053	-	-	-
Dissolved Lead	g/m³	< 0.0011	< 0.00011	-	-	-
Dissolved Nickel	g/m³	< 0.0053	0.00142	-	a 2	-
Dissolved Zinc	g/m³	< 0.011	0.0011	-	-	
Polycyclic Aromatic Hydrocarb	ons Screening in W	/ater, By Liq/Liq				
Acenaphthene	g/m³	< 0.00010	< 0.00010	÷	-	-
Acenaphthylene	g/m³	< 0.00010	< 0.00010	-		-
Anthracene	g/m³	< 0.00010	< 0.00010	-	-	-
Benzo[a]anthracene	g/m³	< 0.00010	< 0.00010	-	-	· •
Benzo[a]pyrene (BAP)	g/m³	< 0.00010	< 0.00010	-	-	-
Benzo[b]fluoranthene + Benzo[fluoranthene	j] g/m³	< 0.00010	< 0.00010	×	-	-
Benzo[g,h,i]perylene	g/m³	< 0.00010	< 0.00010	-	-	
Benzo[k]fluoranthene	g/m³	< 0.00010	< 0.00010	-	-	-
Chrysene	g/m³	< 0.00010	< 0.00010	-	-	-
Dibenzo[a,h]anthracene	g/m³	< 0.00010	< 0.00010	-	-	-
Fluoranthene	g/m³	< 0.00010	< 0.00010		-	-
Fluorene	g/m³	0.0005	< 0.0002	-	-	
ndeno(1,2,3-c,d)pyrene	g/m³	< 0.00010	< 0.00010	-	-	(#)
Naphthalene	g/m³	< 0.0005	< 0.0005	-		-
Phenanthrene	g/m ³	0.0005	< 0.0004	-	67.	-
Pyrene	g/m ³	< 0.0002	< 0.0002			-
Total Petroleum Hydrocarbons	in Water					
C7 - C9	g/m³	< 0.10	< 0.10		_	_
C10 - C14	g/m ³	< 0.2	< 0.2	-	-	-
C15 - C36	g/m ³	< 0.4	< 0.4	-	-	
Total hydrocarbons (C7 - C36)	g/m³	< 0.7	< 0.7			-

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised.

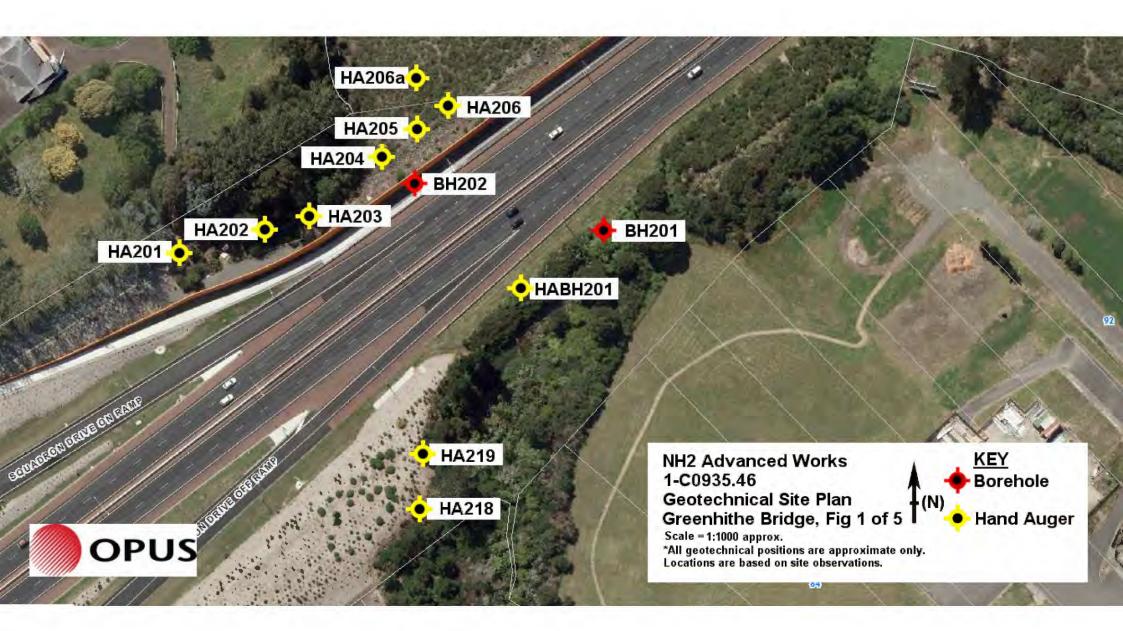
The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which atory are not accredited.

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Aqueous			
Test	Method Description	Default Detection Limit	Sample No
Heavy metals, dissolved, digested, trace As,Cd,Cr,Cu,Ni,Pb,Zn	0.45µm filtration, followed by Nitric acid digestion, ICP-MS, trace level	0.000053 - 0.0011 g/m ³	1-2
Polycyclic Aromatic Hydrocarbons Screening in Water, By Liq/Liq	Liquid / liquid extraction, SPE (if required), GC-MS SIM analysis [KBIs:4736,2695]	0.00010 - 0.0005 g/m³	1-2
Total Petroleum Hydrocarbons in Water	Hexane extraction, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines [KBIs:2803,10734]	0.10 - 0.7 g/m³	1-2
Total Digestion after Filtration	Sample filtration through 0.45µm membrane filter followed by boiling nitric acid digestion. Required for samples which precipitate after filtration. APHA 3030 E 22nd ed. 2012 (modified).	-	1-2
Dissolved Mercury	0.45µm filtration, bromine oxidation followed by atomic fluorescence. US EPA Method 245.7, Feb 2005.	0.00008 g/m³	1-2

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.


Ara Heron BSc (Tech) Client Services Manager - Environmental Division



Opus International Consultants Ltd The Westhaven, 100 Beaumont St PO Box 5848, Auckland 1141 New Zealand

t: +64 9 355 9500 f: +64 9 355 9585 www.opus.co.nz

APPENDIX F BOREHOLE LOGS: GEOTECHNICAL FACTUAL REPORT (OPUS, 2014B)

Appendix B Borehole Logs & Core Photographs

								E	30)R	EH	OLE LOG							HOLE N	 H20)1
	OPUS GEOTECHNICAL	PROJECT					NH2					CO-ORD. 1747971 E	592	7253	_	4.	47 m		SHEET	1 of	f 2
		LOCATION		Se	e site	plan, \$	SH16,	Hob	son	ville		REF. GRID			DA	<i>тим</i> М	ISL		HOLE LENGTH	10 .	.61
						TEST	S	E		Ð				CORE			DRI	LLING			Τ
GEOLOG 1/UNI			R.L. (m)	DEPTH (m)	GRAPHIC LOG	SPT N VALUE SPT BLOW COUNTS OR	SHEAR VALUE	ROCK STRENGTH	WEATHERING	DEFECT SPACING	DIP degree	S DETAILED DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL		OTUED
	Clayey SILT; with trace fine s of fine angular gravel and rou stiff, moist, slightly plastic, tra	otlets, brown,	4	-												_				<u>××</u>	
	Silty CLAY; with trace fine sa fine to 2cmØ gravels, greyish orange, stiff, moist, plastic. Fine to 5cmØ GRAVELS; with medium dense, moist, brittle. Poor recovery from 0.95m to	h brown mottled		- - - - 1- -										100	HA	HA					
	'silty clay'. Material washed a drilling due to gravel interfere Silty CLAY; with trace fine to	way during ence. 1cmØ angular		-										18	HQ						
	gravels, orange mottled brow hard, plastic. Trace organics of brown silty clay.	nish orange, , trace pockets			1	0 2//2/3	/3/2							82	SPT						
			_2											52	HQ						
	Inclusions of larger 3 to 6cm gravels at 2.8m. No recovery from 3.0m to 3.4 'clay'. Material not obtained i	15m. Inferred	:	- 3- -		1 4//0/0	/0/1							0	SPT						
	gravel interference. Push tube attempted at 3.5m and material becomes too ha		_	-																	
	Alt finatenal becomes too ha at 3.7m. Poor recovery from 3.7m to 4 SILT; with some fine sand, g plastic.	1.4m. Clayey		4×- 	* * × × ×			(cw					17	HQ						
	Fine sandy SILT; with minor hard, brittle but slightly plasti reworked.		0	× × ×	•× • • •	 13//14/1 for 25	6/22/8 mm	(cw					100	SPT						
	Muddy fine grained SANDST extremely weak, moderately	ONE; grey, weathered.		5- <u>``</u>	× (MW			Fracture, 11° dip; undulating,									
	Alternating sequence of mod thick bedded muddy fine gra SANDSTONE (50%); grey, e slightly weathered with MUD grey, very weak, slightly wea Moderately inclined bedding	ined xtremely weak, STONE (50%); thered.	-		× × × × × ×	UC: 1600	S: kPa					Fracture, 11° dip; undulating, rough, no coating at 5.1m. Shattered segment of core from 5.2m to 5.25m. Two fractures, 44° and 48° dips; undulating, rough, no coating at 5.5m and 5.55m. Fracture, 16° dip; planar, smooth, trace clay coating at 5.6m. Fracture, 58° dip; undulating, smooth, no coating at 5.8m. Shattered segment of core from 5.85m and 6.0m.	63	100	HQ	HQTT					
	to undulating.				××)+ 25//29/ for 5r	29/2	EW S	SW			Shattered segment of core from 5.85m and 6.0m.		sc	SPT						
	MUDSTONE; grey, very wea to slightly weathered. 1cm thick bed of 'soft' MUDS extremely weak, highly weath	TONE;	2		× × × × × × × ×			////	sw			Two fractures, 10° and 16° dips; undulating, smooth, no coating at 6.4m and 6.55m. Shattered core. 51° dip fracture; planar, smooth, no coating cross cut by a 73° dip fracture; undulating, smooth, no coating from 6.9m to 7.1m.	78	100	HQ						
					60)+ 60 f 140n	or							SC	SPT						
	Fine grained SANDSTONE; weak, moderately weathered		-4	8					ww			Fracture, 38° dip; planar, smooth, trace clay coating. Shattered segment of core from 7.95m to 8.15m. Fracture, 70° dip; undulating, smooth, no coating at 8.3m.	74	100	HQ						
	MUDSTONE; grey, very wea weathered. Muddy fine grained SANDST extremely weak, slightly wea	ONE; grey,		9-	60	UC: 3200 	V	/\\\	SW					SC	SPT						
									sw			Fracture, 68° dip; undulating/ stepped, smooth, no coating at 9.5m. Fracture, 26° dip; undulating, smooth, no coating at 9.6m.	71	100	HQ						
от	ſES		_									STARTED 6-06-20	∩1⊿			FINI	SHED	10	-06-201	4	
NL	9-6-2014 = 1.9m (5pm) 10-6-2014 = 2.2m (8am)	molation										Driller Billy				DRI	LLING (DF		
ngle onta	e piezometer installed upon co amination samples taken at 0.7	empletion. 1m, 1.0m and 2.0r	m.									INCLINATION/ AZIMUTH -90°				DRI	lling F		CAT		
												LOGGED	eelen			Сне	CKED	Knock			

		Ppo (sor						BC	DR	RE	EHG	OLE LO									ہ H20 1	1
	OPUS GEOTECHNICAL	PROJECT				NH2	2						CO-ORD. 1747971 E	592	7253	R.L N		47 m		SHEET	2 of 2	2
	of the management	LOCATION		Sec.	te n	lan, SH1		heor	wille	<u> </u>			REF. GRID				тим	ISL		HOLE LENGTH		61 m
			; 	Jee Si	_	ESTS				Т					CORE				LING	 	10.6	
GEOLOGY/UNIT	MAIN DESCRIPT		R.L. (m) DEPTH (m)	GRAPHIC LOG		SPT BLOW COUNTS OR SHEAR VALUE	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	di 0	DIP egrees		D DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	s		BASE OF HOLE & WATER LEVEL	PIEZOMETER	OTHER INSTRUMENTATION
	Fine grain sandy MUDSTON slightly weathered.	E; very weak,	6		60+	60 for 110mm	VW	sw				Two cross-cu 41° dips; undi coating at 9.9 Shattered seg 9.9m to 10.0n	It fractures, 26° and lulating, smooth, no 35m. gment of core from n.	71	100 SC	HQ SPT	НОТТ					
	End of Borehole at 10.61m.					60 for 110mm									SC	SPT						
			15- - - - - - - - - - - - - - - - - - -																			

LOGGED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005) GUIDELINES	SEE ATTACHED KEY SHEET FOR EXPLANATION OF SYMBOLS	S CLIENT Watercare Services Limited	Јов No. 1-C0935.46	DIL
		Logged T Van Deelen	CHECKED G Knocker	BH20 ²
Single piezometer installed upon completion. Contamination samples taken at 0.1m, 1.0m and 2.0m.		INCLINATION/ AZIMUTH -90°	DRILLING RIG	
SWL 10-6-2014 = 2.2m (8am)		Driller Billy	DRILLING CO.	
SWL 9-6-2014 = 1.9m (5pm)		6-06-2014	10-06-201	4
NOTES		STARTED	FINISHED	
14 _ _ _				

0.00m – 4.90m

Box 1 of 3

7.70m – 10.61m EOH

Box 3 of 3

								BC	OF	RE	EHC	OLE LO	COG							HOLE N	^{10.} H20	2
	OPUS	PROJECT											CO-ORD.		3050	R.I		05		SHEET		•
	GEOTECHNICAL	LOCATION				NH2							1747902 REF. GRID	E 592	27258		тим	25 m		HOLE LENGTH	1 of	
				See s		olan, SH1 TESTS	6, Ho	obsor	nville	e					CORE	-			LLING		18	5.1 m
GEOLOGY/UNIT	MAIN DESCRIPT		R.L. (m)	DEPTH (m) GRAPHIC LOG	SPT 'N' VALUE		ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	ď	DIP egrees 90	DETAILE	D DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	S		BASE OF HOLE & WATER LEVEL	DETAILS	OTHER INSTRUMENTATION
	Fine to 10cmØ angular GRA matrix; with trace clay, brown moist.		_																			
	SILT: with some clay and sor angular silt fragments, grey r grey very stiff, slightly plastic	nottled bluish		- - - - 1 -											100	HA	HA					
	CLAY; with some silt, greyish stiff, plastic, moist.	n brown, very	_4	- - - -														40%				
Ε	Fine to 3cmØ angular BASA a CLAY matrix; some silt, gre very stiff, plastic, moist.	LT fragments in eyish brown,	2	 	34	12//11/7/7/9 	•								24	SPT	-					
	Large angular BASALT BOU grey, 'strong', slightly weathe	LDERS; dark red.	_			 									100	HQ		100%				
			_2	3- - - - - - - - - - - -											80	HQ						
Alluvium	Fine sandy CLAY; with some greyish brown, firm to stiff, pl rootlets.		_	4-1-2		 																
	Silty CLAY; dark grey, stiff, p	lastic.	ţ			 									100	PT	-					
	SILT; with some clay, grey, s plastic.	F	_0			 0//1/1/1/1 									78	SPT	-					
	Fine sandy SILT; grey, stiff, b	prittle.	6			 									100	HQ	НДТТ					
	Silty fine SAND; grey, loose,	brittle	_			 		CW							100	PT	_					
orup	, sing into a nite, groy, 10036,		-	7- [×] ×	10	 2//2/2/3/3 									100	SPT	_					
Waitemata Gorup	Fine SAND; with some silt, g brittle.	rey, loose, –	2		* * * * *	 									100	HQ	-					
Wai	SILT; with some clay and trac grey, stiff, slightly plastic. Gently inclined bedding plane		8	3	; ; ;	 2//2/3/2 									100	SPT						

Gently inclined bedding plane at 7.9m. SILT; with some fine sand and trace clay, grey, very stiff, brittle but slightly plastic once reworked.		HW					68	HQ				
	$ \begin{array}{c c} 9 \\ -4 \\ -x \\ -x \\ -x \\ -x \\ -x \\ -x \\ -x$	4/3/6		Moderate carbonac 9.2m	ely inclined, laminae, eous organic streaks at		67	SPT				
		EW HW		0.211.		4	57	НQ				
NOTES			 		STARTED				FINISHED			
					27-05-	2014					05-20 ⁻	14
SWL 28-5-2014 = 3.5m (5pm) SWL 29-5-2014 = 3.5m (8.30am)					Driller Bil				DRILLING	CO.	DF	
Single piezometer installed upon completion. Contamination samples taken at 0.1m, 1.0m and 2	2.1m.				INCLINATION/ AZIMUTH -90°	ı y			DRILLING	Rig	CAT	
					LOGGED T Van I	Deelen			CHECKED G			БПЭС
LOGGED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (200		EE ATTACHED KEY SHE			CLIENT Watercare Ser				JOB NO.	:0935.4		BH20

							BC	DR	EH	IOLE	LOG CO-ORD.			R.	L.			HOLE I B SHEET	H20	0
	GEOTECHNICAL				NH2						1747902 E REF. GRID	592	7258		TUM	5 m		HOLE LENGTI	2 מ	
			See si		lan, SH1 ESTS	16, Ho	obson	ville					CORI		1	SL DRIL			· · ·	_
GEOLOGY/UNIT	MAIN DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	SPT 'N' VALUE		ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	DIP degree		AILED DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD		CASING	BASE OF HOLE & WATER LEVEL	PIEZOMETER DETAILS	
<u> </u>	MUDSTONE; grey, extremely weak, highly weathered.				0,00,	EW	HW	-	0		ures, 12° and 14° dips; g, smooth, trace sand t 10.05m and 10.10m.	4	57	нq					^{P1}	
	CLAY; with some silt, grey, 'very soft', plastic.						CW			coating a	t 10.05m and 10.10m.	-	57							
	MUDSTONE; grey, extremely weak, highly weathered.	-		į	5//6/8/8/5 UCS: 810								100	SPT						
		6 6 			UCS: 810 kPa	EW	HW				tures, 57° and 21° dips; mooth, trace clay coating n and 11.15m. tures, 31° and 24° dips; mooth, trace clay coating n and 11.55m.	90	100	HQ						
	Alternating sequence of moderately thick bedded MUDSTONE (65%); grey, extremely weak, moderately weathered with fine to modium SAND (25%) with some solut	12-			38//31/20					Shattered	d segment of core from									
	medium SAND (35%); with some silt, dense, brittle, weakly cemented. Moderately inclined bedding planes, planar to undulating.		× × × × × ×		38//31/29 for 75mm	EW	нw			carbonac 11.95m.	ely inclined, very thin, eous organic streak at		SC	SPT						
	MUDSTONE; grey, extremely weak to very	 - - - 13-								Shattered 12.8m to	d segment of core from 12.95m.	71	100	HQ						
	weak, slightly weathered.	8 -								Shattered	segment of core from									
Gorup		-		60+	60 for 120mm UCS: 1500 kPa	vw	sw			13.3m to Fracture, no coatin	d segment of core from 13.4m. 35° dip; planar, smooth, g at 13.4m.		SC	SPT	-					
lata Go		14-													НДТТ					
Waitemata	Fine grained SANDSTONE; very weak, moderately weathered. MUDSTONE; grey, extremely weak to very					VW	MW				d core from 14.4 to	71	100	HQ						
-	weak, highly weathered.	-								15.0m.										
		-10 -		60+	35//41/19 for 25mm	EW	нw						sc	SPT						
	MUDSTONE; grey, extremely weak, highly weathered.									Shattered 15.6m.	d core from 15.3 to									
	Fine sandy MUDSTONE; grey, weak concretion, slightly weathered.					W	sw					68	100	HQ						
	Muddy fine grained SANDSTONE; very weak, slightly weathered. Becomes very weak from 16.2m.	16									d segment of core from o 16.15m. 42° dip; planar, smooth, ⁄ coating at 16.15m.									
	MUDSTONE; grey, very weak, slightly weathered.			60+	60 for 140mm						d core from 16.45m to		SC	SPT						
		- - - - 17-				VW	SW													
	Muddy fine grained SANDSTONE; very weak, slightly weathered.	12 -				000	377			Shattered	d segment of core from	30	100	HQ						
		-								17.3m to	d segment of core from 17.4m.									
		- - 18-		60+	60 for 100mm					Shattered 17.9m to	d segment of core from 17.95m.		SC	SPT						
	End of Borehole at 18.1m.																			1
		19-																		
		14 -																		
		-																		
NO.	TES	-	1								STARTED				FINIS	HED		05.53		-
SWL SWL	L 28-5-2014 = 3.5m (5pm) L 29-5-2014 = 3.5m (8.30am) Je piezometer installed upon completion.										27-05-2 Driller Billy					LING Co	0.	-05-20 DF	14	
Cont	tamination samples taken at 0.1m, 1.0m and 2.1	lm.									INCLINATION/ AZIMUTH -90° LOGGED				DRILL CHEC	LING RI		CAT		
	GED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005)				SEE ATT.						T Van D	eelen			JOB I	G K	nocke	er	BI	

0.00m – 3.10m

Box 1 of 6

6.00m – 9.45m

Box 3 of 6

9.45m – 13.00m

13.00m – 16.00m

Box 5 of 6

16.00m – 18.10m EOH

																				HOLE N	0	
								B	DR	RE	HC	DLE LO	OG									2
	OPUS	PROJECT											CO-ORD.			R.L				SHEET		U
	GEOTECHNICAL					NH2	2						1748181 E	592	7462	N	4.	90 m			1 of	2
		LOCATION		0	4		<u>с н</u>						REF. GRID			DA	тим			HOLE LENGTH	45	10
				See si		olan, SH1	ь, н		IVIIIE	•				1	0005		N	/ISL			15.	12 m
E						TESTS	STH .		DNG									DRIL	LING			OTHER INSTRUMENTATION
INN/					ILUE		STRENGTH	SNING	PAC						RE Ү (%	ΥPE		ss		HOLI	TER	ENTA
00			Ê	HIC H	N. V2	R VI	(STF	HEF	CTS		ΝP			(%)	VER	LEJ	PNG PDG		DN DN	TER	PIEZOMETER Details	RUMI
GEOLOGY/UNIT	MAIN DESCRIPT	TION	R.L. (m)	DEPTH (m) GRAPHIC LOG	SPT 'N' VALUE	SPT BLOW COUNTS OR SHEAR VALUE	ROCK	ROCK WEATHERING	DEFECT SPACING	deq	rees 90	DETAILE	D DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING Method	DRILLING Fluid Loss	CASING	BASE OF HOLE & WATER LEVEL	DET	NSTI
-	Fine to 10cmØ angular GRA	VELS in a SILT	-				-			0	90			-					0			
	matrix; brown, dense, brittle, rootlets.	moist, trace		_																		
	CLAY; with trace silt and trac 3cmØ angular gravels, orang		1	_																		
	plastic, moist. No more gravel from 0.6m.	g.o 2.0, o,		_											100		∢					
			_4	_											100	HA	HA					
	Becomes brownish grey stre from 1.0m.	aked orange		1-		 																
				_																		
	CLAY; with some silt and tra	ce fine sand	_	_		1									100	SPT						
	light grey mottled orangish b			_	9	2//1/2/3/3																
	plastic.		L																			
				2-																		
				_											100	HQ						
		-h	_2	3-																		
	Silty fine SAND; dark browni medium dense, brittle.	sn grey,		_	34	11//10/6/9/9									60	SPT						
III				_																Č.		
	Poor recovery from 3.45m to gravel interference with the o	core barrel.		_																		
	Inferred 'large gravels in a sa	and matrix'.		_																		
	No recovery from 4.0m to 4.9	5m. Inferred	-	4-											5	HQ						
	'fine sand', very loose.			_														100%				
																		1				
	1cm to 3cmØ angular GRAV matrix; brown, dense, brittle,	'ELS in a SILT moist, trace		_	14	9//4/3/3/4									53	SPT						
	rootlets.		_0	_											55	571						
	Poor recovery from 4.95m to gravel interference with the o	6.4m due to core barrel.		5-																		
	Large angular gravels in an i matrix'.	inferred 'sand		_																		
				_											22	HQ						
				_													НДТТ					
			_														Ĕ			000		
				6-											100	Push Tube						
				_											100	HQ				, D		
	Silty fine SAND; with trace cl loose, brittle but slightly plas	lay, light grey, tic once		_																		
	reworked.		_	_		 									100	Push Tube						
	Silty CLAY; grey mottled ora	nge, very stiff,	2	7-1	8	 																
	plastic. Silty fine SAND; grey mottled	orange	-		14	3//2/3/4/5		RS							100	SPT						
	medium dense, brittle.	-																		, P		
	Silty fine SAND; grey, dense cemented.	, brittle, weakly				 		cw														
				$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix} \times \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 1 \end{bmatrix}$								Relict fracture	e, 24° dip: planar.									
đ	Alternating sequence of moc moderately thick bedded fine	derately thin to e to medium	Γ	8								rough, no coa	e, 24° dip; planar, ating at 7.8m.									
roup	grained SANDSTONE (80%); grey, very			1									00	100	нΟ						1

LOGGED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005)	GUIDELINES S	SEE ATTACHED KEY S	SHEET FOR EXPLANA	TION OF SYMBOLS	CLIENT Watercare Serv	ices l	_imite	d	Јов No. 1-C0935	5.46	511205
					LOGGED T Van D	eelen			CHECKED G Knocl	ker	BH203
					Inclination/ Azimuth -90°				DRILLING RIG	CAT	
SWL 3-6-2014 = 5.3m (8am) Borehole backfilled.					Driller	/			DRILLING CO.	DF	
SWL 30-5-2014 = 6.8m (3.30pm)					29-05-2	2014				-06-2014	
NOTES					STARTED				FINISHED		
C weak, slightly weathered with MUDSTONE (20%); grey, very weak, slightly weathered. Gently inclined bedding planes, planar.	$ \begin{array}{c} -4 \\ 9 \\ - \times \times \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ -$	50 for 30mm	SW		d core from 8.7m to 8.8m. 29° dip; stepped, to coating at 9.2m.	90	100 100 100	HQ SPT HQ			

Scale 1:33.33

		Page reat				B	OR	EF	10	DLE LO									vo. H20	3
	GEOTECHNICAL	PROJECT		Ν	H2						CO-ORD. 1748181 E	592	7462		4.	90 m		SHEET	2 of	2
		LOCATION	See s	ite plan, S	H16, H	lobsoi	nville				REF. GRID			DA	TUM	ISL		HOLE LENGTH	⁺ 15. ⁻	12 m
				TESTS									CORE			DRI	LLING			
GEOLOGY/UNIT	MAIN DESCRIPT		R.L. (m) DEPTH (m) GRAPHIC LOG	SPT 'N' VALUE SPT BLOW	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	DII degre			D DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL	 PIEZOMETER DETAILS 	OTHER INSTRUMENTATION
	Alternating sequence of mod moderately thick bedded fine grained SANDSTONE (80%) weak, slightly weathered with	to medium ; grey, very MUDSTONE			vw	sw				Gently incline carbonaceous 9.9m.	d, very thin, s organic streaks at	100	100	НQ						
	(20%); grey, very weak, sligh Gently inclined bedding plane Fine to medium grained SAN grey, very weak, unweathere	es, planar. IDSTONE;	6 11-		n	300				Fracture, 22° smooth, no co	dip; stepped, pating at 10.8m.		SN	SPT	-					
	grey, very weak, unweathere	u.			vw	UW						100	100	HQ						
	MUDSTONE; grey, very weal weathered. Fine to medium grained SAN	IDSTONE;	12	60+ 60 fo	VW VW		-			Two fractures undulating, rc 11.7m and 11	s, 55° and 61° dips; ough, no coating at 9m.		SN	SPT						
Waitemata Group	\grey, very weak, unweathered Alternating sequence of thin thick bedded fine to medium SANDSTONE (75%); grey, vo slightly weathered with MUD	to moderately grained ery weak, STONE (25%);								Fracture, 6° d fine sand fillir	lip; planar, smooth, ig at 12.2m.				НДТТ					
Waiter	grey, very weak, slightly weat Gently inclined bedding plane	thered. es, planar.	8 13 8 8 	60+ ^{29//27/2}	7/6 m						dip; undulating, tting at 12.7m.	75	100	HQ						
					vw	sw				Shattered cor 13.5m.	e from 13.25m to		SN	SPT	_					
											dip; undulating, bating at 14.1m.	89	100	HQ						
			10	UCS	Pa						e from 14.4m to d, closely spaced, onaceous organic 14.65m to 15.0m.	03								
				60+ 60 fo 120m	n								SN	SPT						
	End of Borehole at 15.12m.																			
			16-																	
			18																	

E) 1-C0935.46 NH2.GPJ OPUS CHCH DEC12.GDT 1-8-1		14 19 															
	TES								STARTED				FINISHED				
									29-05-	2014					06-201	4	
& SWL	.30-5-2014 = 6.8m (3.30pm) .3-6-2014 = 5.3m (8am) hole backfilled.								Driller Bill	у			DRILLING (СО.	DF		
									Inclination/ Azimuth -90°				DRILLING F	RIG	CAT		
									Logged T Van D	eelen			CHECKED G P	Knock	er	БПО	02
	ED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005) G	GUIDELINES	SEE ATTACHED	KEY SHEE	ET FOR EX	(PLAN,	ATIOI	N OF SYMBOLS	CLIENT Watercare Ser		imite	d	JOB NO.	0935.		BH2	03

0.00m – 3.45m

Box 1 of 4

3.45m – 8.30m

8.30m – 12.00m

Box 3 of 4

12.00m – 15.12m EOH

								BC	DR	REI	HC	DLE LO	OG							HOLE N	ہ۔ H20 4	4
	OPUS	PROJECT											CO-ORD.			R.I				SHEET		
	GEOTECHNICAL	LOCATION				NH2	2						1749087 E <i>Ref. GRID</i>	592	7788		<u>26</u> тим	.58 m		HOLE	1 of	3
				Sees	site j	plan, SH [·]	16, G	reenh	nithe)							Ν	ISL		LENGTH	22.	57 m
					-	TESTS	H		NG						CORE			DRIL	LING			TION
GEOLOGY/UNIT			R.L. (m)	DEPTH (m) GRAPHIC LOG	SPT 'N' VALUE	SPT BLOW COUNTS OR SHEAR VALUE	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	D degi 0		DETAILE	ED DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL		OTHER INSTRUMENTATION
	Clayey SILT; brown, stiff, pla	7		_		 															<u>×</u> ×	
Fill	Silty CLAY; with trace fine to gravels and trace fine pocket silt, greyish brown, stiff, plast	ts of fine sandy ic, moist.	_26	- - - - - - - - - - - - - - - - - - -											100	НА	HA				l	
	SILT; with some clay and trad angular gravels, dark greyish plastic, trace fibrous wood.	brown, stiff,		 																		
				2 	6	1//2/1/1/2									47	SPT	_					
	Silty fine SAND; light grey mo loose, brittle.	ottled orange,				 																
	SILT; with some clay, grey m hard, plastic.	ottled orange,	_24		>			RS							100	HQ						
	Silty fine SAND; grey streake medium dense, brittle.	ed orange,			· . · . · .																	
			;	3	20	4//4/5/5/6									100	SPT	-					
	Silty fine SAND; light greyish orange, medium dense, brittl	brown mottled e.			· . · .	 											-				14	
		-		4											49	HQ						
			_22		21	 5//3/5/6/7 									100	SPT						
			!	5 - - - - - - - - - - - - - - - - - - -		 																
Waitemata Group	Trace clay and slightly plastic	conce	_		· · · · · · · · · · · · · · · · · · ·										59	HQ	НДТТ					
mata	reworked from 5.8m. Silty fine SAND; orange brow	vn mottled light	(6 <u></u> ******		 											-					
Waite	greyish brown, medium dens	e, brittle.			24	6//4/6/6/8 		CW							100	SPT	-					
	Trace carbonaceous organic Fine sandy SILT; grey, hard,		_20	7											100	HQ						
	Silty fine SAND; grey, mediu	m dense,	-		31	 6//6/6/9/10 									100	SPT	-					
	brittle. Fine sandy SILT; grey, very s	/			,																	

LOGG	ED IN ACCORDANCE WITH NZ GEOTECHNICAL SOCIETY (2005)	GUIDELINES SEE ATTACHED	KEY SHEET FOR EXPLANA	ATION OF SYMBOLS	CLIENT	T Van Deelen care Services		d	G Knoo JOB NO. 1-C093		BH20
Singl	le piezometer installed upon completion. tamination samples taken at 0.1m, 1.0m and 2.0)m.			INCLINATION/ AZIMUTH LOGGED	-90°			DRILLING RIG	CAT	
WL	_ 4-6-2014 = 3.9m (4.30pm) _ 5-6-2014 = 5.75m (7.30am), 3.5m (4.30pm) _ 6-6-2014 = 4.9m (8am)				Driller	Billy			DRILLING CO.	DF	
	TES					3-06-2014				5-06-2014	4
					STARTED				FINISHED		
	Becomes weakly cemented from 9.8m.						48	НQ			
	Silty fine SAND; medium dense, brittle.	9					100	SPT			
							23				
	Fine sandy SILT; grey, very stiff, brittle. Gently inclined bedding plane, planar.						23	НQ			

							BC	DR	EH		OG						HOLE N	^{10.} H20	4
	OPUS	PROJECT			NH2	,					CO-ORD. 1749087 E	592	7788 N	R.L	26.58 m	I	SHEET	2 of	f 3
1	GEOTECHNICAL	LOCATION									REF. GRID	592	<u>//00 N</u>	_	ТИМ		HOLE LENGTH	4	
	1		1	, <u> </u>	plan, SH	16, G	reenh	hithe					0005		MSL			22.	.57 m
GEOLOGY/UNIT	MAIN DESCRIPT	10N	R.L. (m) DEPTH (m)	GRAPHIC LOG		ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	DIP degrees	DETAILE	D DESCRIPTION	RQD (%)	TOTAL CORE OO RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL	PIEZOMETER	OTHER INSTRUMENTATION
	Silty fine SAND; medium der	nse, brittle.								Relict fracture rough, no coa	e, 61° dip; planar, ating at 9.9m.		48	HQ					
	Occasional very thin layers o some clay, hard, slightly plas	of SILT; with tic from 10.5m.	16 	× × 2 × × 2 × × × 2	7 5//4/7/7/9								sc	SPT					
	Becomes dense from 11.5m						CW						100	HQ					
			12-	× 60	+ 33//60 for 70mm								SC	SPT					
	Fine grained SANDSTONE; weak, slightly weathered. MUDSTONE; grey, very wea unweathered. Muddy fine grained SANDST very weak, unweathered.	k,				VW	SW	-		12.4m.	ed, lamanae, s organic streaks at dip; planar, smooth, 12.75m.	100	100	HQ					
				60	60 for 90mm UCS: 3900 kPa	VW	UW			Fracture, 8° c rough, no coa Gently incline carbonaceou 13.3m.	dip; undulating, ating at 13.2m. :d, lamanae, s organic streaks at		SC	SPT					
dno	Fine grained SANDSTONE;	grey, very	14							Gently incline	ed, lamanae, s organic streaks o 14.6m.	100	100	HQ					
Waitemata Group	weak, unweathered.		15-	60	80mm					from 14.5m to	o 14.6m.		SC	SPT	НДТТ				
Waite	Silty fine SAND; very dense, cemented.	brittle, weakly			UCS: 490 kPa 		HW					8	100	HQ					
	Alternating sequence of mod	lerately thick			 + 49//60 for 30mm								sc	SPT					
	bedded fine grained SANDS grey, very weak, unweathered bedded MUDSTONE (20%); weak, unweathered. Gently inclined bedding plan undulating.	d with thin grey, very			30mm					Gently incline carbonaceou from 16.8m tt Fracture, 9° c rough, 1cm tt 16.95m. Gently incline very thin, carl	ed, lamanae, s organic streaks o 16.85m. lip; undulating, nick clay gouge at ed, closely spaced, bonaceous organic 17.2m to 17.5m.	100		HQ					
		k	 		 + 60 for 110mm					streaks from Moderately ir spaced, very organic strea 17.7m.	17.2m to 17.5m. Inclined, closely thin, carbonaceous ks from 17.6m to		SC	SPT					
	MUDSTONE; grey, very wea unweathered. Fine grained SANDSTONE; unweathered, massive.		8 8 19			vw	UW					100	100	HQ					
NO SWI SWI SING Con				60	+ 60 for 70mm							100	<u>SC</u> 100	SPT HQ					
NO SWI SWI SWI Sing	TES L 4-6-2014 = 3.9m (4.30pm) L 5-6-2014 = 5.75m (7.30am), 3 L 6-6-2014 = 4.9m (8am) Jle piezometer installed upon co itamination samples taken at 0.	mpletion.	n.							Dr	ARTED 3-06-2 RILLER Billy CLINATION/ IMUTH -90°				FINISHED DRILLING (DRILLING F	Со.	06-201 DF CAT	4	
Logo	GED IN ACCORDANCE WITH NZ GEOTECH				SEE ATT,	ACHED K	EY SHEE	ET FOR E	EXPLANATIO	Lo	IGGED T Van D IENT Watercare Serv		imited		JOB NO.	<nock 0935.</nock 	er	BH2	204

								סר	ل ا	OLE LO								HOLE N		
		IECT					D	אכ			Co-ord.			R.I				B Sheet	H204	4
	GEOTECHNICAL				NH	2					1749087 E	592	7788 I	N	26	.58 m			3 of	3
	LOCA	ATION	See	site	e plan, SH	16, G	reenh	ithe			REF. GRID			DA	<i>тим</i>	ISL		HOLE LENGTH	22.	57 m
					TESTS								CORE				LING			
GEOLOGY/UNIT	MAIN DESCRIPTION	R.L. (m)	DEPTH (m)		SPT 'N' VALUE SPT BLOW COUNTS OR SHEAR VALUE	ROCK STRENGTH	ROCK WEATHERING	DEFECT SPACING	DIP grees 90	DETAILE	D DESCRIPTION	RQD (%)	TOTAL CORE RECOVERY (%)	SAMPLE TYPE	DRILLING METHOD	DRILLING FLUID LOSS	CASING	BASE OF HOLE & WATER LEVEL	DETAILS	OTHER INSTRUMENTATION
	Fine grained SANDSTONE; very w unweathered, massive.	veak,																		
Group			21	6	:0+ 60 for 90mm					Gently incline carbonaceous 20.7m.	d, moderately thick, s organic streaks at	100	100 SC	HQ						
Waitemata (Fine to coarse grained SANDSTO weak, unweathered, massive.	NE; very				vw	UW								НДТТ					
Wai			22-									100	100	HQ						
	End of Borehole at 22.57m.	4		6	60 for 70mm								SC	SPT					66866	
		:	23-																	
		_																		
		:	 24—																	
		_2																		
			25 - - -																	
		_	-																	
		:	26																	
		_0																		
		:	27-																	
			 28—																	

		CLIENT	JOB NO.	
		 Logged T Van Deelen	CHECKED G Knocker	BH204
Sing	- 6-6-2014 = 4.9m (8am) le piezometer installed upon completion. tamination samples taken at 0.1m, 1.0m and 2.0m.	Inclination/ Azimuth -90°	DRILLING RIG	
SWI	_ 5-6-2014 = 5.75m (7.30am), 3.5m (4.30pm) _ 6-6-2014 = 4.9m (8am)	Billy	DF	
SWI	_ 4-6-2014 = 3.9m (4.30pm)	DRILLER	DRILLING CO.	-
	TES	3-06-2014	5-06-2014	4
		STARTED	FINISHED	
	29-			
	2			

0.00m – 3.45m

Box 1 of 7

7.50m – 11.90m

Box 3 of 7

11.90m – 14.80m

14.80m – 17.80m

Box 5 of 7

17.80m – 20.80m

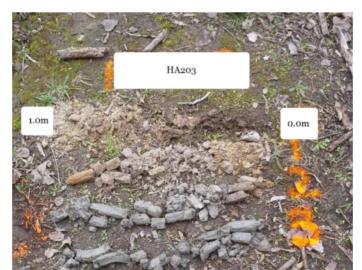
20.80m – 22.57m EOH

Box 7 of 7

Appendix D Hand Auger Logs

		LOG OF AUG	EF	R H	IOI	E				HOLE NO.)1
	OPUS	PROJECT NH2 LOCATION See site plan, SH16, Hobsonville			CO-ORD 17 4 REF. GF	47839	E 5927246 N	R.L. 7.52 n DATUM MSL	n	SHEET 1 o TOTAL DEPTH	of 1 5 m
								SOIL TES			
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETR Blows per 10 0 2 4 6 8 10 12	OMETER	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Topsoil		iff, moderate plasticity, trace rootlets, ed light brown with black flecks, very stiff, low plasticity, sensitive, with trace organics		-4	$\frac{1}{\sqrt{12}} \cdot \frac{1}{\sqrt{12}} \cdot \frac{1}{\sqrt{12}}$					Contaminatior sample at 0.0m	
Fill	(fresh wood).	reaked orange (limonite staining), very stiff, moist, moderate plasticity, sensitive, with d). t 1.0m.							186/25 103/8 219+		Bulk sample
Ę	(rootlets).	v streaked brownish orange, hard, moist, moderate plasticity, traces organics	-6	2 2					219+		at 1.5m
Alluvium				3 3					219+ 219+	Contaminatior sample at 3.0m	Bulk sample at 3.0m
dn	low plasticity.	e sand, greyish brown mottled greyish blue with orange limonite streaks, hard, moist, ttled greyish brown at 3.6m.	-4		`^ •				219+		Bulk
Waitemate Group	Becomes grey at 4.0m.			4-* -×		\square			219+	Contaminatior sample at 4.0m	sampla
Waiter	Silty fine to medium SANI Water table at 4.3m	D; grey, medium dense, saturated, uniformly graded.	_		× · · · · · · · · · · · · · · · · · · ·	_			UTP		
	End of Hand Auger at 5.0 No scala-penetrometer te	m. Too hard to auger. st undertaken.		5	<u>× [·] . [·] . [·] .</u>				UTP		

NOTES	LOGGED	DATE EXCAVATED	
Shear vane 1559	S Farquhar	29-05-201	14
Correction factor = 1.563 Contamination samples taken at 0.1m, 1.0m and 2.0m Bulk samples taken at 1.5m, 3.0m and 4.0m	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Joв No.</i> 1-C0935.46	HA201


1		LOG OF AUG	ER	НС	DLE				HOLE NO.	2
	OPUS	PROJECT NH2 LOCATION See site plan, SH16, Hobsonville			DRD. 1747864 GRID	E 5927250 N	R.L. 4.83 I DATUM MSL	n	SHEET 1 or TOTAL	
							SOIL TES	тѕ		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m) GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETR Blows per 10 0 2 4 6 8 10 12		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Fill	trace rootlets. Silty CLAY; grey, hard, m Clayey SILT; with some fi Trace fine to medium ang SILT; with some fine sand added. Gravel is fine-med	ne sand, brown mottled greyish brown and orangey brown, hard, moist, low plasticity, oist, moderate plasticity. ne sand, brown mottled greyish brown and orange brown, hard, dry, low plasticity. ular gravel at 0.7m.	-4					UTP	Contamination sample at 0.1m	

NOTES Shear vane 1558 Correction factor = 1 449	LOGGED S Farquhar	DATE EXCAVATED 30-05-2014	
	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA202

		LOG OF AU	IGFF	S F	101	F			1	HOLE NO.	
	OPUS									HA20	13
	0.00	PROJECT NH2		0	CO-ORD	47877	E 5927253 N	<i>R.L.</i> 3.72 r		Sнеет 1 о	<i>c</i> 1
				1	REF. GF		E 5927253 N	DATUM		TOTAL	
		See site plan, CH -168:8L (from edge of noise wall	l)					MSL	. //	DEPTH	5.5 m
								SOIL TES	тѕ		
GEOLOGY/UNIT				-	DOJ	шZ	SCALA PENETR			OTHER TESTS	-
90-			Ê	<u>ب</u>	HIC	UT OT O	Blows per 10	0 mm	R NG1	1 H	
GEOI		DESCRIPTION	R.L. (m)		GRAPHIC	MOISTURE	0 2 4 6 8 10 12	2 14 16 18 20	SHEAR STRENGTH kPa	отне	SAMPLES
		arse sand, fine gravel, boulders, brown, stiff, moist, low plasticity, trace rootlets.			$\overline{\overline{A}}$ \overline{A} \overline{A} \overline{A} \overline{A} \overline{A}					Contaminatior sample	1
Fill		arse sand and trace fine sand, light brown mottled orange, moist, moderate plast	ticity.	_						at 0.0m	
Ē	Becomes stiff, moderately	v sensitive at 0.5m.	-						67/20		
	Fine SAND; with some cla Becomes medium dense a	ay, light brown, loose, moist, brittle. at 1.0m.		1-					203+	Contaminatior sample	
	Becomes light grey streak	ed orange at 1.2m.		-	· · · · ·					at 1.0m	Bulk
	Fine sandy CLAY; light gr	ey, hard, moist, moderate plasticity.		-					203+		sample at
		-) /	-2	_							1.5m
	Orange staining at 1.9m.			2-					UTP	Contaminatior	
	Becomes dark bluish grey	y at 2.1m.		_						sample at 2.0m	
				-					07/05		
-	CLAY; dark bluish grey, st	iff, moist, high plasticity, moderately sensitive.		-					87/35		
dno.	Fine sandy CLAY: dark bl	uish grey, stiff, moist, high plasticity, moderately sensitive.		-							Bulk
a Gr		bluish grey, very stiff, moist, high plasticity, moderately sensitive.		3-	_				145/55		sample at
itemata Group				-							3.0m
				_					107/41		
Wa			—o	-							
									178/65		Bulk sample
	Fine sandy CLAY; dark blu	uish grey, very stiff, moist, low plasticity, moderately sensitive.							110,00		at 4.0m
									UTP		
				5	· <u>····</u> ·······························				138/81		
					· <u> </u>						
	_ Becomes hard at 5.5m.				· · · · · · ·				203+		
	End of Hand Auger at 5.5 No scala-penetrometer tes	m. Gravel blocking hole. st undertaken.		2 -							
	·····			-							
			I			I					

NOTES Shear vane 1558 Correction factor = 1.449	LOGGED J Burton	DATE EXCAVATED 29-05-2014	
	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA203

	OPUS	LOG OF A	AUGER					HOLE NO. HA20)4
	0103	PROJECT		CO-ORD.		R.L.		SHEET	
		NH2 LOCATION		REF. GRID		Approx. 1.'		<u>1</u> оз ТотаL	<u>f 1</u>
		See site plan, CH-150:9L (from noise wall)			MSL		DEPTH	2 m
						SOIL TESTS	S		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)		SCALA PENETF Blows per 10	ROMETER D0 mm 2 14 16 18 20	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Σ	Clayey SILT; brown, soft, s SILT: with some fine sand	aturated, low plasticity, some rootlets. and minor clay, light brown, soft, saturated, low plasticity.		$\times - \times \times$				Contamination sample	1
Alluvium	No rootlets, and a pungent	sulphurous odour at 0.2m.					20/12	at 0.Ôm	
Waitemata Group		wet, moderate plasticity, sensitive.		* * * * * * * * * * * * * * * * * * *			136/23		
	End of Hand Auger at 2.0n Scala-penetrometer test ur	n. Too hard to auger. Idertaken from 2.0 m to 2.5 m.	2						
SKET	CH OF EXPOSURE								

NOTES	LOGGED	DATE EXCAVATED		
Shear vane 1558 Correction factor = 1.449	S Farquhar	11-06-20	14	
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA204	

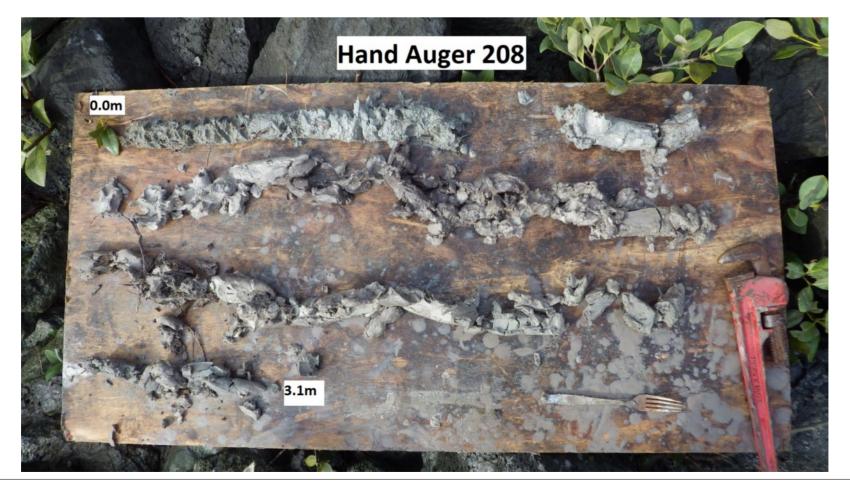
		LOG OF AU	GER	HOI	_E			F	HOLE NO.)5
	OPUS	PROJECT		CO-ORD			R.L.	5	TIAL Sheet),
		NH2		D=5 01			Approx. 0.6	m	1 c	of 1
		LOCATION See site plan, CH -140:10L (from noise wall)		REF. GF	RID		DATUM MSL		OTAL DEPTH	2.4 m
							SOIL TESTS			
IN				g					ស	
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10 0 2 4 6 8 10 1	2 14 16 18 20	SHEAK STRENGTH kPa	OTHER TESTS	SAMPLES
iment	Fine sandy SILT; light brov Groundwater level at 0.0m	wnish grey, very loose, saturated, brittle, some rootlets and organics. n (surface).							Contamination sample at 0.0m	
Marine Sediment	Clayey SILT; with minor fir	ne sand, light grey, firm, saturated, low plasticity, sensitive, trace rootlets.	-0					37/7	Contamination sample	Bulk sample at 0.5m
AII.		, moderate plasticity, sensitive, trace rootlets.		- * * - * * - * *					at 0.6m	
	Silty CLAY; grey, stiff, wet	, moderate plasticity, sensitive.	1					89/12		
Waitemata Group	Becomes moist, very stiff,	sensitive at 1.5m.	_					110/17		Bulk sample at 1.5m
Wa	Becomes grey, streaked b	olackish grey at 1.9m.	2					UTP		
	End of Hand Auger at 2.4 Scala-penetrometer test u	m. Too hard to auger. Indertaken from 0.0m to 0.9m and 2.40m to 3.45m.	2							
SKE	CH OF EXPOSURE									
		D.Om	er 20!	5						

NOTES Shear vane 1558	LOGGED S Farquhar	DATE EXCAVATED 12-06-2014	
Correction Factor = 1.449 Contamination samples taken at 0.0m (x2), 0.6m Bulk samples taken at 0.3m, 1.5m C All. = Alluvium C	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA205

/	OPUS	LOG OI	FAUGER	HOLE				HOLE NO.)6
	OPUS	PROJECT		CO-ORD.		R.L.		Sheet	. 4
		NH2 LOCATION		REF. GRID		Approx.	-	1 o	1
		See site plan, CH -122:13L (from noise	e wall)			MS	L /	DEPTH	3 m
						SOIL TES	STS		-
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG MOISTURE CONDITION	SCALA PENETR Blows per 10		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sediment	Groundwater level at 0.0m Trace clay, low plasticity at Moderate plasticity at 0.6m Silty CLAY; grey, stiff, wet,	t 0.5m.	-0 -				14/3	Contamination sample at 0.0m Contamination sample at 0.6m	Bulk sample at 0.4m
	Trace rootlets at 0.75m.		1-				72/12		
Waitemata Group			2-				148/23 203+		Bulk sample at 1.5m
							203+		Bulk sample at 2.5m
	End of Hand Auger at 3.0r Scala-penetrometer test u	n. Too hard to auger. ndertaken from 0.0m to 0.9m and 3.0m to 3.8m.	3 						
SKE			I				I	1	I

NOTES Shear vane 1558 Correction factor = 1.449	LOGGED S Farquhar	DATE EXCAVATED 12-06-201	14
	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Job No.</i> 1-C0935.46 НА2	

		LOG OF AUG	EF	R F	IOL	E			· · · · · · · · · · · · · · · · · · ·	HA20	6 A
	OPUS	PROJECT			CO-ORD).		R.L.		Sheet	
		NH2			REF. GF	2/0		Approx.		1 c	of 1
		LOCATION See site plan, CH -122:22L (from noise wall)			REF. GF	RID		DATUM MS		TOTAL DEPTH	3 m
											<u> </u>
								SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10		SHEAR STRENGTH ƙPa	OTHER TESTS	SAMPLES
ent	SILT; with some fine sand, Groundwater level at 0.0m	greyish brown, soft, saturated, brittle, some rootlets.	_	_	× × ×					Contamination sample	1
Marine Sediment	Fine to medium SAND; mi	nor silt and trace clay, grey, loose, saturated, brittle but low plasticity on remould,	7	_	× ×					at 0.0m	
Sec	trace rootlets.	, and minor clay, firm, saturated, low plasticity, sensitive, minor rootlets.		_	× × ×						Bulk sample
ine			-0	_	× × × × ×				42/9		at 0.4m
Mar				_	×××					Contaminatio	
	Clayey SILT; with minor fir	e sand, grey, stiff, wet, low plasticity, sensitive.		_	××					sample at 0.6m	
				_	× ×					Contaminatio	
	Becomes stiff at 1.0m.			1-	× _ ×				58/14	sample at 0.9m	
				_	$\times \times \times \times \times$						
				_	^ * ^ × ×						
	Silty CLAY; with trace fine	sand, grey, very stiff, wet, moderate plasticity, moderately sensitive.	-	-	<u>× ×</u>						Bulk sample
dn				_	××××				100/29		at
Gro				_	$ \times \times $						1.5m
Waitemata Group	Silty CLAY; grey, very stiff,	moist, moderate plasticity, sensitive.	_	-	×_×						
emi				2-	× × ×				119/29		
Vait				-	××××				110/20		
>				-	××						
				_	* * *						Bulk
			2	2 —	×××				156/43		sample at
				-	$\times \xrightarrow{\times} \times$						2.5m
				_	$ \times \times $						
	Becomes hard at 3.0m.			_	× _ × _						
		n. Too hard to auger. ndertaken from 0.0m to 0.9m and 3.0m to 3.9m.		-3-			+ + + + + + + + + + + + + + + + + + + +		203+		
	Scala-penetrometer test u	ndertaken from 0.0m to 0.9m and 3.0m to 3.9m.		_							
				_							
				_							
				_							
				-				XIII			
				_							
SKET	CH OF EXPOSURE										


NOTES Shear vane 1558 Correction Factor 1.449	LOGGED S Farquhar	DATE EXCAVATED 12-06-2014	
	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA206A

/		LOG OF AU	IGER	НС)LE				HOLE NO.)7
	OPUS	PROJECT		CO-C	DRD.		R.L.		SHEET	
		NH2		REE	GRID		Approx.		<u>1 о</u> ТотаL	of 1
		See site plan, CH 590:4L (from bridge rail)		1.27.	On and		MS		NEDTH	2.5 m
							SOIL TES	STS		
Ę				0					S	
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m) GRAPHIC LOG	MOISTURE	SCALA PENETF Blows per 1 0 2 4 6 8 10 1		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sed.	Clayey SILT; with trace fir Groundwater level at 0.0n	ne sand, brownish grey, very soft, saturated, low plasticity, trace shells. n (surface).			× × × ×				Contaminatior sample at 0.0m	
		e clay, light grey, very stiff, saturated, low plasticity, sensitive.		` >				162/39		Bulk sample
	Becomes very stiff, sensit	sand, light reddish brown, very stiff, saturated, low plasticity, sensitive, trace		× · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·					at 0.5m
	organics. Becomes stiff at 1.0m. Silty fine to coarse SAND	with some clay, reddish brown, stiff, saturated, poorly graded.		$1 \xrightarrow{-x} \xrightarrow{-x}$	- × - × - ×			58/14		Bulk sample at 1.5m
Alluvium	Becomes firm, moderately	/ sensitive at 1.5m.	2					43/16		1.011
		ive at 2.0m. sand, dark grey, very stiff, saturated, low plasticity, sensitive. trace fine sand very stiff, saturated, low plasticity, sensitive, and trace fibrous		2	<			136/29		
	organics. Becomes hard at 2.5m							UTP		Bulk sample
	End of Hand Auger at 2.5 Scala-penetrometer test u	m. Too hard to auger. Indertaken from 0.0m to 0.9m and 2.5m to 2.9m.		-						∖ at \2.5m

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.5m, 2.5m Sed. = Sediment	LOGGED B Mason	DATE EXCAVATED 27-06-2015		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA207	

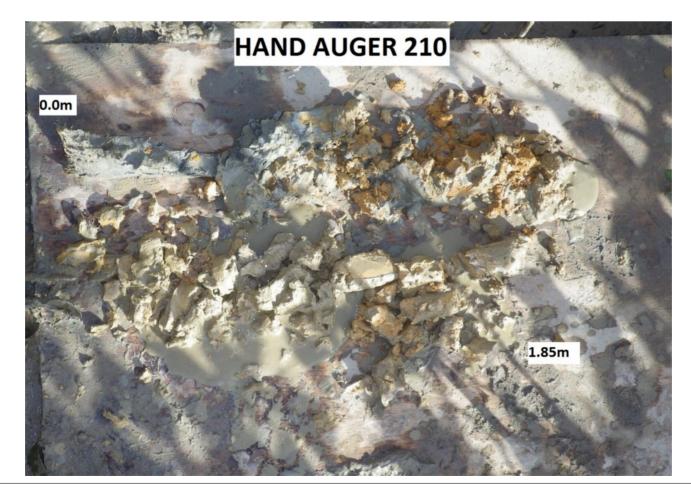
	•		LOG OF	AUGE	R	HO	LE					סר
	OPUS	PROJECT				CO-OR			R.L.		HA2(0
			NH2						Approx.			of 1
		LOCATION	a aita alan CH 100:111 (from acias ur	-11)		REF. G	RID		DATUM MS		TOTAL DEPTH	3.1 m
		3	e site plan, CH -100:11L (from noise wa						SOIL TES			<u>3.1 m</u>
F									SOIL TE	515		-
GEOLOGY/UNIT		1	DESCRIPTION		R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
iment	SILT; trace fine sand, grey Groundwater level at 0.0m Becomes light grey with tr	n (surface).	aturated, brittle, some rootlets. Sity at 0.1m.				× ×				Contamination sample at 0.0m	n
Marine Sediment	Some fine sand at 0.3m. Clayey SILT; with some fir rootlets.	ne sand, light grey, ver	loose, saturated, low plasticity, moderately sensit		-0					20/12		Bulk sample at 0.5m
M			derate plasticity, moderately sensitive, minor root		1.					81/26	Contamination sample at 0.7m	Bulk sample
	Silty CLAY; trace fine sand rootlets. With pungent sulphurous		aturated, moderately plasticity, moderately sensiti	ve, minor								at 1.0m
	Becomes dark brown mot Silty CLAY; with trace fine \organics.	tled grey with trace org sand, dark brown, stiff	saturated, high plasticity, sensitive, trace rootlets	and trace						65/17		Bulk sample at 1.5m
Alluvium	Silty CLAY; with trace fine Sandy CLAY; with traces of sensitive. Becomes hard at 2.0m.	e sand, dark brown, stiff of rootlets and fibrous o	high plasticity, sensitive, trace fibrous organics. saturated, high plasticity, sensitive, trace fibrous rganics, brown mottled grey, stiff, saturated, high		2					203+		Bulk sample at 2.0m
	Large decayed wood frage CLAY; trace fine sand, gre Becomes light grey and se	eyish brown, hard, satu	ated, high plasticity, some fibrous organics.		2		<.			107/14		Bulk sample at 2.5m
	wood organics.		, brittle but moderate plasticity on remould, some f	fibrous	3		<u> </u>			203+		Bulk sample at
	End of Hand Auger at 3.1 Scala-penetrometer test u		to 3.65m.		-							<u>3.0m</u>

NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2), 0.7m Bulk samples at 0.5m, 1.0m, 1.5m, 2.0m, 2.5m, 3.0m	LOGGED J Burton	DATE EXCAVATED 1-07-2014		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA208	

		LOG OF AUG	ER	HO	LE			1	HA208	8A
	OPUS	PROJECT		CO-OF	RD.		R.L.		Sheet	
		NH2					Approx.		1 o	of 1
		LOCATION		REF. (GRID		DATUM		TOTAL DEPTH	
		See site plan, CH-100:16L (from noise wall)					MSL	-	3	8.65 m
							SOIL TES	TS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10		SHEAR STRENGTH KPa	OTHER TESTS	SAMPLES
	SILT; trace clay and fine s Groundwater level at 0.0r	sand, greyish brown, very soft, saturated, trace rootlets.			>				Contaminatior sample	n
Marine Sed.	Clayey SILT; trace fine sa	and, greyish brown, saturated, low plasticity, some rootlets. e sand, brownish grey, stiff, saturated, high plasticity, sensitive, minor fibrous	0		×			87/9	at 0.0m Contaminatior sample at 0.4m	Bulk sample at 0.5m
	Trace fine sand at 0.8m.				×					Bulk
-	Sandy silty CLAY; greyish ∖organics.	brown, stiff, saturated, high plasticity, sensitive, trace rootlets and trace fibrous	/ 1		×			75/12		sample at
	Silty CLAY; with some fin	e sand, dark brown with black streaks, stiff, saturated, high plasticity, sensitive, minor	(×					1.0m
-	fibrous organics. Fine SAND: with some cla	ay, light brown mottled white, loose, saturated.			×					Bulk
					· .			67/20		sample at
	Fine sandy SILT; with some clay, light grey mottled orange, stiff, saturated, moderate plasticity. Fine sandy CLAY; light brown with light grey streaks, stiff, saturated, low plasticity, moderately sensitive, trace				-					1.5m
	fibrous organics.				×					Bulk
m	trace fibrous organics.	e sand, light grey motiled brown, still, saturated, high plasticity, moderately sensitive,	2	× _	×			58/20		sample at 2.0m
Alluvium	Some fine sand at 2.5m. Trace fine sand at 2.6m.		2		× *- ×			81/43		Bulk sample at 2.5m
	Becomes very stiff at 3.0r Becomes brittle but plasti	n. c on remould with white specks at 3.1m.	3		× × ×			142/41		Bulk sample at 3.0m
	End of Hand August at 2.6	55m. Target depth achieved.	_		×			119/35		Bulk sample at 3.5m
	Scala-penetrometer test	undertaken from 3.65m to 4.55m.	4							

NOTES	LOGGED	DATE EXCAVATED	
NUTES Shear vane 1558 Correction factor = 1,449	J Burton	1-07-20	14
Contaction factor = 1.449 Contamination samples taken at 0.0m (x2), 0.4m Bulk samples taken at 0.5m, 1.0m, 1.5m, 2.0m, 2.5m, 3.0m, 3.5m Push tube sample taken from 1.0m to 1.5m, 2.0m to 2.4m	CHECKED BY:	EXCAVATOR	
Marine Sed. = Marine Sediment Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA208A

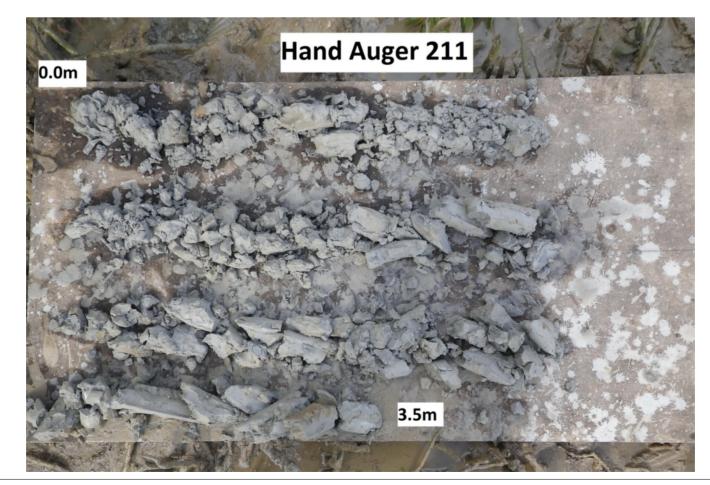
	OPUS	LOG OF AU	GER	HO	LE			, , , , , , , , , , , , , , , , , , ,	HOLE NO.)9
	OPUS	PROJECT		CO-OR	D.		R.L.		Sheet	
		NH2		REF. G	RID		Approx.		<u>1 а</u> Готац	of 1
		See site plan, CH -82:12L (from noise wall)					MSI			3.5 m
							SOIL TES	тя		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETF Blows per 1(0 2 4 6 8 10 1		SHEAR STRENGTH ƙPa	OTHER TESTS	SAMPLES
	SILT; with minor clay, track rootlets.	e fine sand, dark grey, very soft, saturated, pungent hydrocarbon odour, some	_	× × × ×	,				Contaminatior	1
Marine Sed.	Groundwater level at 0.0m Becomes soft at 0.5m.	n (surface).			* * * * * *			43/17	sample at 0.0m	Bulk sample at 0.5m
	Silty CLAY; with trace fine	sand, grey, stiff, moist, high plasticity.	1- 0		- P. P P			58/29		Bulk sample at 1.0m
					······································			84/41		Bulk sample at 1.5m
Alluvium			2					72/41		Bulk sample at 2.0m
4	Poor recovery from 2.5m t Minor organics (fibrous wo	to 3.5m. bod and plant material) at 2.5m.			· .			75/43		Bulk sample at 2.5m
		bod and plant material) at 3.1m.	2 2		·> · · · · · · · · · · · · ·			203+		
	Becomes very stiff at 3.5m End of Hand Auger at 3.5r			× ×	-			81/32		
	Scala-penetrometer test u	ndertaken from 3.65m to 4.05m.	4-							


NOTES Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0m, 1.5m, 2.0m, 2.5m	LOGGED J Burton	DATE EXCAVATED 26-06-2014		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA209	

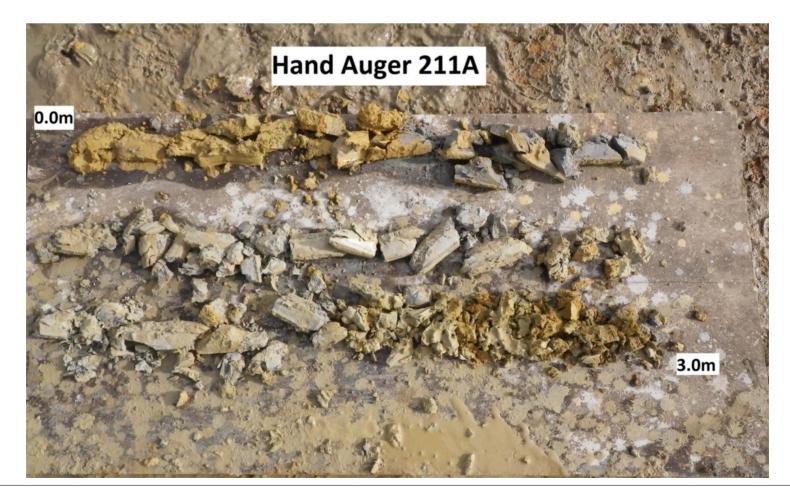
		LOG OF AUG	ER	HOI	E				HOLE NO.	9A
	OPUS	PROJECT NH2		CO-ORE).		R.L.		SHEET	of 1
		LOCATION		REF. GI	RID		Approx. 0.9 m		TOTAL	
		See site plan, CH -82:18L (from noise wall)					SOIL TES	_		3.6 m
Ę				U			SOIL TES	515	ß	
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)		MOISTURE	SCALA PENETF Blows per 10 0 2 4 6 8 10 1		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Ĕ	SILT; fine sand, and trace Groundwater level at 0.0m	clay, greyish brown, very soft, saturated, some rootlets. (surface).		× × × × × × × × × × × × × × × × × × ×	_				Contamination sample at 0.0m	n
	Sandy CLAY; greyish brow	vn, stiff, saturated, low plasticity, sensitive, minor fibrous organics.						96/9		
			-0 1-					43/9		
Alluvium	Silty CLAY; with trace fine	sand, grey, stiff, saturated, high plasticity, trace rootlets.						72/14		
Allu			2-					58/29 72/38		
	Dark brown streaks, trace Becomes reddish brown a	gravel and some organics at 2.8m. t 2.9m.	2 3-					130/43		
	Silty CLAY; trace fine sand Some fine sand at 3.4m.	d, reddish brown, stiff, low plasticity, moderately sensitive, some fibrous organics.						203+		
	End of Hand Auger at 3.6r Scala-penetrometer test u	m. Target depth achieved. ndertaken from 3.6m to 4.3m.	4- 4							
SKET	CH OF EXPOSURE									
		Hand Auger 20	D9A							

NOTES	LOGGED J Burton	DATE EXCAVATED 1-07-2014		
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2), 0.9m Bulk samples not taken due to low recovery M. = Marine Sediment	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA209A	

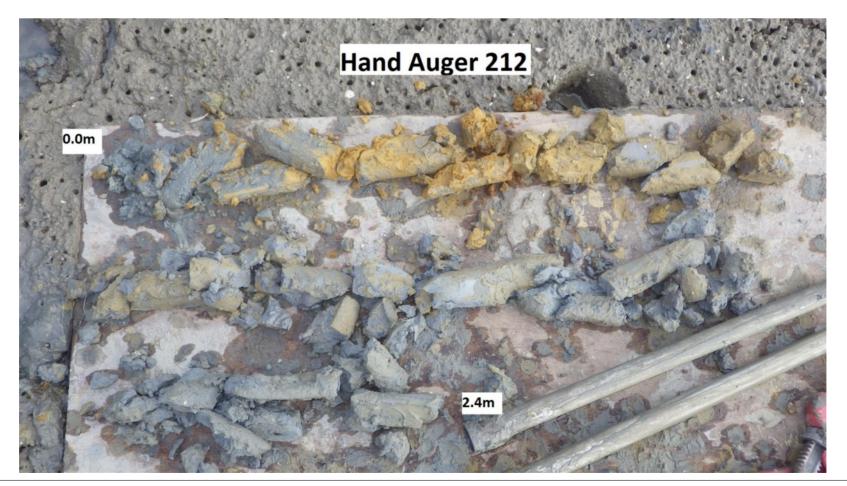
		LOG OF AUC	SER	R HO	OLE	Ε				HOLE NO.	0
	OPUS	PROJECT		CO	-ORD.			R.L.		SHEET	
		NH2		PE	F. GRID			Approx	1.6 m	1 c	of 1
		See site plan, CH -42:5L (from edge of sea wall)			r. GRID			MSL	_	NEDTU	.85 m
								SOIL TES	TS		
ΠN					g	Ì				പ	
GY/U				(E)			SCALA PENETR Blows per 10		GTH	LES.	ES
GEOLOGY/UNIT			R.L. (m)	DEPTH (m)	GRAPHIC LOG	CONDITION	biows per to		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
		DESCRIPTION ft, wet, low plasticity, some rootlets.	<u>.</u>			<u> </u>	0 2 4 6 8 10 12	2 14 16 18 20	₽₽₽	5 Contamination	
Marine Sed.	Groundwater level at 0.0m	n (surface).			$\begin{array}{c} \times \\ \times $					sample at 0.0m	
	Silty fine SAND; with trace remould.	clay, brownish orange mottled grey, medium dense, brittle but low plasticity on	2						203+		Bulk sample at
	Fine SAND; with some silt	, orange, medium dense, saturated, poorly graded.		× *							0.5m
	Poor recovery from 0.7m t	o 1.2m.		<u> </u>							
Waitemata Group									UTP		Bulk sample at 1.0m
Wai	Fine sandy SILT; with trac	e clay, grey mottled orange, hard, saturated, low plasticity.									
	Fine sandy SILT; orange,	medium dense, saturated, brittle.			× . × . × .				UTP		
	End of Hand Auger at 1.85 Scala-penetrometer test u	5m. Too hard to auger. ndertaken from 0.0m to 0.95m and 1.65 m to 2.05 m.		2- -				+			


NOTES Shear vane 1558 Correction factor = 1.449	LOGGED	DATE EXCAVATED		
	T Van Deelen	24-06-2014		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46 НА2	210	

M		LOG OF AUC	SER	HO	LE				IOLE NO. HA21	DA
	OPUS	PROJECT		CO-OR	D.		R.L.		HEET	
	·mr-	NH2					Approx.		1 o	f 1
		LOCATION		REF. G	RID		DATUM		OTAL DEPTH	
		See site plan, CH -42:10L (from edge of sea wall)					MS	_	3	5.15 m
							SOIL TES	STS	1	
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETR Blows per 10		SHEAR STRENGTH KPa	OTHER TESTS	SAMPLES
q.	Silty CLAY; grey, soft, wet,	low plasticity, sensitive, some rootlets.		××	-				Contaminatior sample	1
Marine Sed.	Groundwater level at 0.2m	clay, medium dense, wet, brittle but low plasticity on remould, sensitive.	2					119/14	at 0.0m	Bulk sample at
		ed orange, medium dense, saturated, poorly graded.			· · · · ·				sample at 0.5m	0.5m
d	Fine SAND; with some silt,	, orange brown, medium dense, saturated, poorly graded.								Bulk sample at
Group	Silty fine SAND; medium d	lense, orange, saturated, poorly graded.		×	-					1.5m
aitemata	Trace fine, weakly cemented	ed, angular gravel at 1.8m.		2				133/20		
8	Clayey SILT; orange with g	grey streaks, very stiff, wet, plastic, sensitive.								
	Some fine sand at 2.4m.		4		 			203+		Bulk sample at 2.5m
		race fine sand, hard, grey, saturated, low plasticity.	:		* * * *			203+		
	End of Hand Auger at 3.15 No scala undertaken due t	m. Target depth achieved. o hole collapse.		-						


NOTES Shear vane 1558 Correction factor = 1 449	LOGGED T Van Deelen	DATE EXCAVATED 24-06-2014		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA210A	

/		LOG OF AUG	SE F	R F	101	E				HOLE NO. HA2'	11
	OPUS	PROJECT			CO-ORD).		R.L.		SHEET	
		NH2			REF. GI			Approx.		<u>1</u> с ТотаL	of 1
		See site plan, CH 18:16L (from cycle lane left kerb)			NLP. Of			MSL		DEPTH	3.5 m
								SOIL TES			
F									10		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
ed.	☐ Fine to medium SAND; wit	h minor silt, soft, orange brown, saturated, brittle. (surface).	Г	_	×					Contaminatio sample	n
le S	Clayey fine SAND; with mi	nor silt, grey, soft, saturated, brittle but low plasticity on remould.		_	· · · · × ×					at 0.0m	
Marine Sed.	Silty CLAY; with trace fine	sand, grey, stiff, wet, moderate plasticity, moderate sensitivity.		_	××						Bulk
2	Fine sandy CLAY; with mir	or silt, grey, soft, wet, moderate plasticity.	_	_	× ×				22/7		sample at
	Becomes very stiff, sensitiv	ve at 1.0m.	-0	- - 1- - -					201/13		0.5m
		sand, grey, very stiff, wet, moderate plasticity, moderate sensitivity.		_	× ×				172/32		Bulk sample
Group		or silt, grey, very stiff, wet, moderate plasticity, sensitive. sand, grey, very stiff, wet, moderate plasticity, moderate sensitivity.		_					172/32		at 1.5m
ta G	Sity CLAT, with trace line	sand, grey, very sun, wet, moderate plasticity, moderate sensitivity.		~ ~	×_× ×				407/00		
Waitemata	Silty fine SAND; with mino	r clay, grey streaked black, medium dense, wet, brittle.		2 - - -	× × ×				167/29		Bulk
			2	2 -	× · · · · · · · · · · · · · · · · · · ·				203+		sample at 2.5m
	Sity CLAY; with trace fine	sand, grey, hard, wet, moderate plasticity, moderate sensitivity.		~	$\hat{\times} \times \times$						
	Becomes hard at 3.0m.			3	× × × × × × * * *				UTP		Bulk sample
	End of Hand Auger at 3.5r Scala-penetrometer test u	n. Target depth achieved. ndertaken from 0.0m to 0.9m and 3.5m to 3.6m.	_	-							at 3.5m

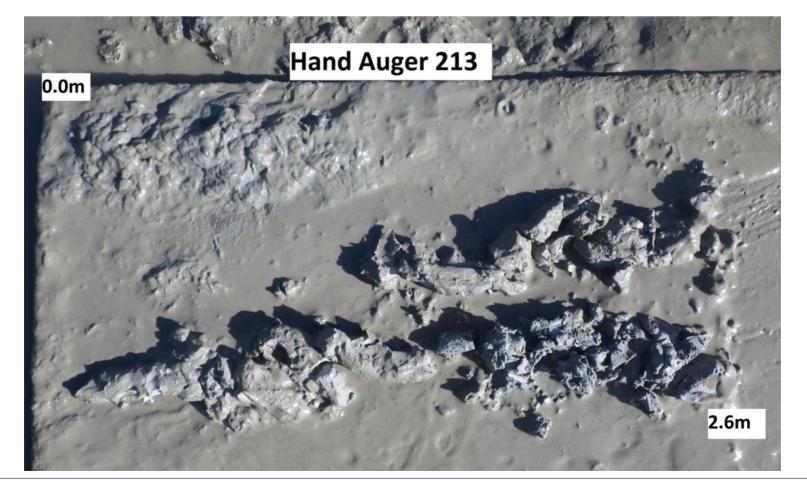

NOTES	LOGGED	DATE EXCAVATED		
Shear vane 1558 Correction factor = 1.449	S Farquhar	11-06-20	14	
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA211	

		LOG OF AUG	EF	RH	IOL	.E					HOLE NO. HA21	1Δ
	OPUS	PROJECT NH2 LOCATION		C	CO-ORD REF. GF				R.L. Approx. DATUM	.6 m	Sheet	of 1
		See site plan, CH 18:24L (from cycle lane left kerb)							MSI	_	DEPIN	3 m
									SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE	Ble	A PENETR ows per 10 6 8 10 12		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
MS	Groundwater level at 0.0m										Contaminatio sample at 0.0m	n
	Becomes hard at 0.5m.	or clay, grey with orange streaks, very stiff, wet, brittle but low plasticity on remould. e sand, grey with black streaks, hard, moist, low plasticity.	0		$\langle \cdot \cdot \cdot \rangle \times \langle \cdot \rangle \rangle \times \langle \cdot \rangle \times \langle \cdot \rangle $					203+		
				> > 1>	× × × × × × ×					UTP		
Waitemata Group	Silty CLAY; with trace fine	sand, light grey, hard, moist, moderate plasticity.			× × × × × ×					UTP		
Waite	Clayey SILT; with some fir	ne sand, grey mottled orange, hard, moist, moderate plasticity.		2-	× × × × × ×					UTP		
	Clayey fine SAND; orange	e mottled grey, hard, moist, brittle but low plasticity on remould.	2		*					UTP		
	End of Hand Auger at 3.0	m. Too hard to auger		3	-····					UTP		
	Scala-penetrometer test u	ndertaken from 0.0m to 0.9m and from 3.0m to 3.6m.	_									

NOTES Shear vane 1558 Correction factor = 1 449	LOGGED S Farquhar	DATE EXCAVATED 11-06-2014		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA211A	

		LOG OF A	UGER I	HOI	E				HOLE NO. HA21	12
	OPUS	PROJECT NH2 LOCATION See site plan, CH 130:13L (from cycle lane left	kerb)	CO-ORE REF. GI			R.L. Approx. DATUM MSL	1.2 m	SHEET 1 o TOTAL	
							SOIL TES			1
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10 0 2 4 6 8 10 1	OMETER	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sed.	Groundwater level at 0.0n								Contaminatior	1
		clay, orange brown, loose, saturated, slightly plastic. grey, hard, moist, moderate plasticity.						65/14	sample at 0.0m	Bulk
Group	Clayey SILT; with trace fin	e sand, grey, medium dense, wet, low plasticity.	-0 -0 -	<pre></pre>	-			UTP		sample at 1.0m
Waitemata				× × × × × × × × × ×				UTP		
	End of Hand Auger at 2.4 Scala-penetrometer test u	n. Too hard to auger. ndertaken from 0.0m to 0.75m.	-							

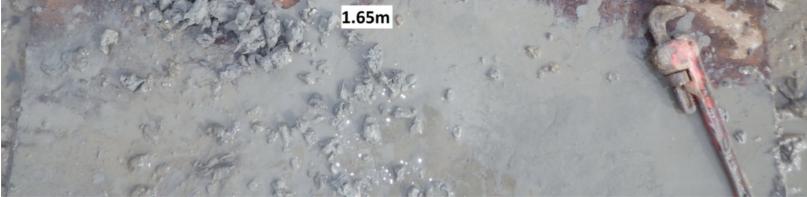
NOTES Shear vane 1558 Correction factor = 1.449	LOGGED	DATE EXCAVATED	
	S Farquhar	30-05-20)14
	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA212


		LOG OF AU	GER	HO	LE			1	HA21	2A
	OPUS	PROJECT NH2 LOCATION See site plan, CH 130:21L (from cycle lane left kerb)	CO-OR			R.L. Approx. 0.1 m DATUM MSL		SHEET 1 a TOTAL DEPTH	_f 1 1.8 m
			/				SOIL TES			
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)		MOISTURE	SCALA PENETF Blows per 10	OMETER	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
WS	Groundwater level at 0.0r	ed grey, very soft, moist, moderate plasticity. n (surface). nor clay, grey mottled orange, hard, moist, brittle but low plasticity on remould.	0							
	Becomes hard at 0.5m.				X · X · X · X · X · X · X · X			UTP	Contaminatior sample at 0.0m	
Waitemata Group	CLAY; with some silt, ora Becomes grey at 1.1m.	nge streaked grey, hard, moist, high plasticity.	1					UTP		Bulk sample at 1.0m
	Fine sandy SILT; with mir	nor clay, grey, hard, moist, brittle but low plasticity on remould.						UTP		
	End of Hand Auger at 1.8 Scala-penetrometer test o	m. Too hard to auger. Indertaken from 0.0m to 0.9m.	2	_						

NOTES Shear vane 1558 Correction factor = 1.449	LOGGED S Farquhar	DATE EXCAVATED 30-05-2014		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA212A	

		LOG OF /	AUGER H	HOL	E			1	HOLE NO. HA21	13
	OPUS	PROJECT NH2 LOCATION See site plan, CH 230:17L (from cycle lane left		CO-ORD			R.L. Approx1.7 m DATUM MSL		SHEET 1 c TOTAL	of 1 2.6 m
						ç	SOIL TES	TS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	<pre></pre>	MOISTURE	SCALA PENETROM Blows per 100 m 0 2 4 6 8 10 12 14	ETER m	SHEAR STRENGTH kPa	SLS SLS TO THER Contaminatio	SAMPLES
Marine Sediment	Groundwater level at 0.0r	and clay, brownish grey, very soft, saturated, low plasticity.	2					13/9	at 0.0m	
u	No recovery from 1.0m to		1 - 					SV sinking under own weight Hole collapse		Pulk
Alluvium	Silty CLAY; grey, stiff, we Silty CLAY; with some fine	, moderate plasticity. e to medium sand, greenish grey, hard, wet, moderate plasticity.	4 4	x x x x x x x x x x x x x x x				Hole collapse UTP		Bulk sample at 1.8m Bulk sample at 2.3m
		m. Too hard to auger. Indertaken from 0.0m to 0.9m and 2.6m to 2.9m.	-	×						

NOTES Shear vane 1558 Correction factor = 1,449	LOGGED S Farquhar	DATE EXCAVATED 13-06-2014		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA213	


		LOG OF AUG	ER	HO	LE				HOLE NO.	3A
	OPUS	PROJECT		CO-OR	D.		R.L.		SHEET	
1		NH2					Approx	1.9 m		of 1
		LOCATION		REF. G	RID		DATUM		TOTAL DEPTH	
		See site plan, CH 230:26L (from cycle lane left kerb)					M			3.65 m
							SOIL TE	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m) GRAPHIC LOG		SCALA PENETR Blows per 10		SHEAR STRENGTH kpa	OTHER TESTS	SAMPLES
Marine Sediment	Clayey SILT; with trace fin Groundwater level at 0.0m	e sand, dark grey, very soft, saturated, low plasticity trace shells. (surface).	2						Contaminatio sample at 0.0m	n Bulk sample at 0.5m
		ft, saturated, low plasticity, trace shells. 3.0m. Inferred 'silty sandy clay'.	_							
Alluvium	Silty CLAY; with trace fine	sand, grey, hard, saturated, high plasticity.	4	3 	:			UTP		
	End of Hand Auger at 3.65 Scala-penetrometer under	im. Target depth achieved. taken from 0.0m to 2.0m and 3.65m to 3.95m.								
SKET	CH OF EXPOSURE									

NOTES No shear vane readings due to hole collapse.	LOGGED J Burton	DATE EXCAVATED 27-06-2014		
Scala double bouncing at 3.95m Contamination samples taken at 0.0m (x2), 0.8m Bulk sample taken at 0.5m Push tube sample from 1.0m - 1.5m	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA213A	

		LOG OF AUG	GER	R H	OLI	E				HOLE NO.	14
	OPUS	PROJECT NH2 LOCATION See site plan, CH 335:16L (from cycle lane left kerb)			0-ORD. EF. GRID)		R.L. Approx. DATUM MS		SHEET 1 c TOTAL DEPTH	of 1 1.65 m
								SOIL TES	STS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETR Blows per 10	OMETER	SHEAR STRENGTH kPa		SAMPLES
Alluvium MS		ne sand, greyish brown, very soft, saturated, moderate plasticity, trace shells. oft, wet, low plasticity, trace shells.			× × × × × × × × × × × × × ×					Contaminatio sample at 0.0m	Bulk
	Sandy CLAY; with trace si	sand, grey, hard, wet, low plasticity, trace shells. It, grey, hard, moist, moderate plasticity. sand, grey, hard, moist, high plasticity.		× × × × ×	× × × × × × × × × ×				203		sample at 0.5m
Waitemata Group		sand, grey, hard, wet, low plasticity, trace shells.			* × × × × × × × ×				UTP		Bulk sample at 1.0m
		sand, grey, hard, moist, high plasticity.	_	×- -×- -×- -×- ×-	× × × × × × ×				UTP		
	End of Hand Auger at 1.6 Scala-penetrometer test u	5m. Too hard to auger. ndertaken from 0.0m to 0.85m and 1.65m to 1.7m.		-							

NOTES Shear vane 1558	LOGGED J Burton	DATE EXCAVATED 27-06-2014		
Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0m C MS = Marine Sediment C	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA214	

	OPUS	LOG OF AUG	ER	HO	LE				HOLE NO.	4A
	OPUS	PROJECT NH2		CO-OF	PD.		R.L. Approx		SHEET 1 a	of 1
		LOCATION		REF. (Grid		DATUM		TOTAL	
		See site plan, CH 335:24L (from cycle lane left kerb)					MSL			2.75 m
F				6			SOIL TES	15		-
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m) GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Alluvium M	Groundwater level at 0.0m Silty sandy CLAY; grey, ha	rd, saturated, moderate plasticity.			× —				Contamination sample at 0.0m	n
Allt		ey, medium dense, saturated, low plasticity. sand, grey, hard, wet, high plasticity, trace shells.			×			UTP		Bulk sample at 0.5m
	Fine sandy CLAY; grey, ha	ard, moist, moderate plasticity.			×			UTP		Bulk sample at 1.0m
litemata Group	Silty CLAY; grey, hard, mo	ist, high plasticity.						UTP		Bulk sample at 1.5m
Wait	Becomes very stiff at 2.0m	l.	4	2	* * *			145/26		Bulk sample at 2.0m
					× × ×					Bulk sample at 2.5m
	End of Hand Auger at 2.75 Scala-penetrometer test u	5m. Too hard to auger. ndertaken from 0.0m to 0.9m and 2.75m to 2.8m.	_	-						


NOTES	LOGGED	DATE EXCAVATED		
Shear vane 1558 Correction factor = 1.449	J Burton	27-06-2014		
Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0m, 1.5m, 2.0m, 2.5m M = Marine Sediment	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Jов No.</i> 1-C0935.46	HA214A	

/		LOG OF AU	GER	H	OLI	Ε				HOLE NO.	15
	OPUS	PROJECT		Co	D-ORD.			R.L.		SHEET	
		NH2		RE	F. GRID	•		Approx DATUM		1 <i>c</i>	of 1
		See site plan, CH 490:5L (from edge of seawall)						MSL		DEPTH	2 m
								SOIL TES	TS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	CONDITION	SCALA PENETR Blows per 10 2 4 6 8 10 12		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
MS	Groundwater level at 0.0m			_×_ _×	× × × × ×	-				Contamination sample at 0.0m	n
Alluvium		sand, grey, hard, saturated, low plasticity, trace shells and trace organics.	2	1	× × × × × × × × × × × × × × × × × × ×			· · · · · · · · · · · · · · · · · · ·	203+ 203+		Bulk sample at 0.5m Bulk sample at 1.0m
Waitemata Group	Fine sandy SILT; light grey	, medium dense, saturated, brittle.			× × × × × × × × × × × × × × × × × × ×				UTP		
	End of Hand Auger at 2.0n Scala-penetrometer test ur	n. Too hard to auger. ndertaken from 0.0m to 0.65m and from 2.0m to 2.3m.		2					UTP		

NOTES	LOGGED B Mason	DATE EXCAVATED 25-06-2014		
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0m MS = Marine Sediment	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA215	

		LOG OF	AUGER I	HOI	LE				HOLE NO. HA21	5A
	OPUS	PROJECT NH2 LOCATION See site plan, CH 490:10L (from edge of sea	a wall)	CO-ORI REF. G			R.L. Approx DATUM MSL	1.0 m	SHEET 1 (TOTAL DEPTH	of 1 2 m
		······································					SOIL TES			
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)		MOISTURE	SCALA PENETR Blows per 10	OMETER	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sed.	Groundwater level at 0.0		-		-				Contaminatio sample at 0.0m	n
	Silty fine SAND; with min	or clay, light grey, hard, saturated, low plasticity, trace shells.			· · · · · ·			UTP		Bulk sample at 0.5m
Alluvium		t grey, very stiff, saturated, low plasticity, sensitive.	2 1- 	×				136/35		Bulk sample at 1.0m
	Trace organics (fibrous w	e clay, dark grey, medium dense, saturated, poorly graded. rood) at 1.4m.	-					UTP		
MG	Silty CLAY; with minor fin	e sand, light grey, hard, saturated, low plasticity.								
	End of Hand Auger at 2.0 Scala-penetrometer test)m. Too hard to auger. undertaken from 0.0 m to 0.7 m and from 1.9 m to 2.2 m	- 2	-						

NOTES Shear vane 1558	LOGGED B Mason	DATE EXCAVATED 25-06-2014	
Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk samples taken at 0.5m, 1.0 m Sed. = Sediment, WG = Waitemata Group	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA215A

	OPUS	LOG OF AL	JGER H	101	E				HOLE NO. HA21	6
	OPUS	PROJECT NH2		CO-ORE			R.L. Approx0	.6 m	SHEET 1 of	[,] 1
		LOCATION See site plan, CH 530:5L (from edge of seawall)		REF. GI	RID		DATUM MSL		TOTAL DEPTH	0.6 m
							SOIL TEST			0.0 111
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10 0 2 4 6 8 10 12	OMETER	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sediment	Groundwater level at 0.0n Becomes blackish grey, v	ery stiff at 0.1m.	-						Contamination sample at 0.1m	
Waitemata Group	Silty CLAY; grey, very stiff	e sand, brownish orange, very stiff, moist, moderate plasticity. moist, moderate plasticity.		× × × × × × × × × ×				UTP		
	End of Hand Auger at 0.6 Scala-penetrometer test u	n. Too hard to auger. ndertaken from 0.6m to 1.0m.		-			i i i i i			

NOTES Shear vane 1559 Correction factor = 1 563	LOGGED S Farquhar	DATE EXCAVATED 29-05-20	14
	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA216

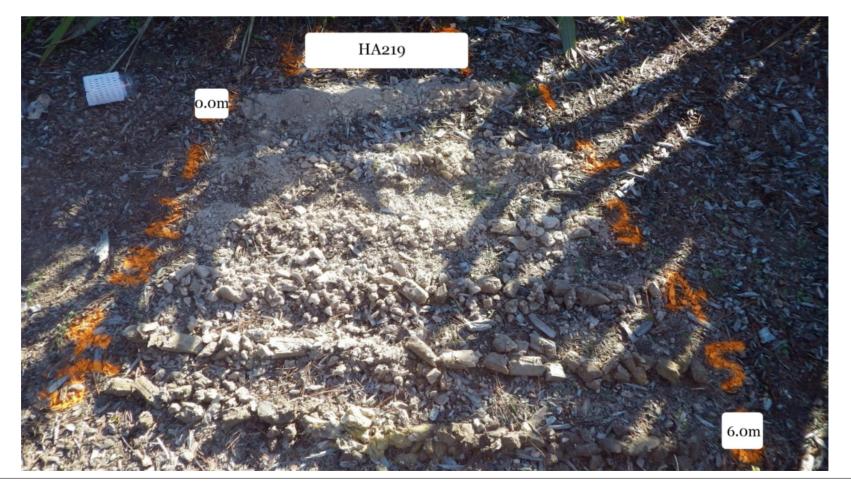
		LOG OF A	UGER	HOLE				HA21	6A
	OPUS	PROJECT NH2 LOCATION See site plan. CH 520:401. (from edge of econycl		CO-ORD. REF. GRID		R.L. Approx0 DATUM MSL).7 m	SHEET 1 o TOTAL	f 1
		See site plan, CH 530:10L (from edge of seawa	II) 		1				0.6 m
F						SOIL TEST	S		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG MOISTURE	SCALA PENETR Blows per 10	00 mm	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Marine Sediment	Groundwater level at 0.0n Becomes orange brown, s	saturated at 0.25m.	_					Contamination sample at 0.1m	
Waitemata Group	Becomes hard at 0.5m.	ne sand, grey, stiff, wet, low plasticity.		x x x x x x x x x x x x x x x x x x x			UTP		
	End of Hand Auger at 0.6 Scala-penetrometer test u	m. Too hard to auger. Indertaken from 0.0m to 0.5m.							

NOTES Shear vane 1559 Correction factor = 1.563	LOGGED S Farquhar	DATE EXCAVATED 29-05-2014	
	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA216A

OPUS	PROJECT NH2 LOCATION See site plan, CH 580:6 (from edge of	R	IOL CO-ORD. REF. GRID			R.L. Approx 1 DATUM MSL		HA21 SHEET 1 or TOTAL DEPTH 0	
	DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENET Blows per 1		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
No hand auger attem	saturated, grey, low plasticity, some shells.).0m (surface). ted due to scala refusal. Ist undertaken from 0.0 m to 0.25 m.							Contamination sample at 0.1m	

NOTES Shear vane 1558 Correction factor = 1.449	LOGGED T Van Deelen	DATE EXCAVATED 24-06-201	14
	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA217

/		LOG OF AU	GER	HOI	E				HA21	7A
	OPUS	PROJECT		CO-ORI) .		R.L.		HEET	
		NH2					Approx.			of 1
		LOCATION See site plan, CH 580:11L (from edge of sea wall)		REF. G	RID		DATUM MS	r	OTAL DEPTH	1.25 m
								I		1.25 m
							SOIL TES	STS	1	_
GEOLOGY/UNIT		DESCRIPTION	R.L. (m) DEPTH (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
Σ	Silty CLAY; grey, very soft Groundwater level at 0.0m	saturated, low plasticity, some shells. (surface).		× — × _	_					
nata Group	Silty fine SAND; with mino	r clay, grey mottled orange, loose, saturated, low plasticity.			Υ 			104/17		
Waitemata		, grey, medium dense, saturated, poorly graded. n. Too hard to auger. ndertaken from 0.0m to 0.6m and 1.0m to 1.2m.	1.					UTP		
SKET	ICH OF EXPOSURE									



NOTES	LOGGED	DATE EXCAVATED	
Shear vane 1558	B Mason	24-06-20	14
Correction factor = 1.449 Contamination samples taken at 0.0m (x2) Bulk sample taken at 0.5m C M = Marine Sediment C	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA217A

		LOG OF AUG	E R	НС	DLE			ŀ	HA21	8
	OPUS	PROJECT		CO-C	ORD.		R.L.		SHEET	
		NH2			1747913	3 E 5927168 N			1 a	f 1
		LOCATION		REF.	GRID		DATUM	1	TOTAL	
		See site plan, SH16, Hobsonville					MSL	-		3.5 m
							SOIL TES	TS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	GRAPHIC LOG	MOISTURE	SCALA PENETR Blows per 10		SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
	Silty CLAY; with some coa	rse sand, brown, firm, moist, moderate plasticity, some rootlets.	-12	_					Contaminatior	1
				-					sample at 0.1m	
-	Silty CLAY; with minor fine	sand, light brownish grey, stiff, moist, moderate plasticity, and trace pumice.								
	Becomes sensitive at 0.5m	1.		-				70/13		
				_						
			_ 1	- 				100/25	Contaminatior sample at 1.0m	1
	Silty CLAY; with some fine plastic.	to coarse sub-angular gravel (scoria and basalt), brown, stiff, moist, moderately								
				-						Bulk sample
								67/29		at 1.5m
Ξ				-						n.sm
ш				-						
	Trace fine subangular grav	vel and minor organics at 1.9m.	2	2-				120/59	Contaminatior	
			-10	-					sample at 2.0m	
									at 2.011	
	Becomes dark brown at 2.	4m		_						
		****		-				151/59		
				-						Dulk
				3-				116/72		Bulk sample
				-						at 3.0m
				_						
	End of Hand Auger at 3.5r	n. Too hard to auger. Multiple attempts.	_							
	No scala-penetrometer tes	st undertaken.								
				-						
				-						
SKET	CH OF EXPOSURE									
SILEI	UT UT LAPUGURE									

NOTES	LOGGED	DATE EXCAVATED		
Shear vane 1558 Correction factor = 1.449 Contamination samples taken at 0.1m, 1.0m, 2.0m Bulk samples taken at 1.5m, 3.0m	S Farquhar	28-05-2014		
	CHECKED BY:	EXCAVATOR		
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HA218	

/		LOG OF AUG	EF	R H	IOL	E			Н	ole NO. HA21	9
	OPUS	PROJECT NH2 LOCATION See site plan, SH16, Hobsonville			CO-ORD 17 4 REF. GF	47913	E 5927190 N	R.L. 9.09 r DATUM MSL	n 7	HEET 1 o OTAL EPTH	f 1 6 m
								SOIL TES	TS		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	DEPTH (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETR Blows per 10	OMETER	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
	Clayey SILT; with trace find	e sand, light brown, hard, dry, low plasticity.							203+	Contaminatior sample at 0.1m	
		e sand, light brown mottled orange and dark brown, hard, dry, low plasticity.	8	1					203+	Contamination sample at 1.0m	Bulk
	plasticity on remould. Clayey SILT; with trace find	sand, light brown mottled orange and dark brown, hard, dry, brittle but moderate e sand, white mottled orange and dark brown, hard, dry, low plasticity. minor clay, light brown with white flecks, hard, low plasticity, trace rootlets.							UTP		sample at 1.5m
		sand, light greyish brown mottled orange, hard, dry, brittle but moderate plasticity		2					203+	Contamination sample at 2.0m	
	Clavey SII T: with minor fir	e sand, light grey mottled brownish orange, hard, dry, low plasticity.	_						203+		
		sand, light greyish brown mottled orange, hard, dry, moderate plasticity.	_								Bulk
Fill	Trace manganese staining		-6	3-					203+		sample at 3.0m
	Silty CLAY; grevish brown,	hard, moist, moderate plasticity.	_	_					203+		
	High plasticity from 3.7m.			_							Bulk
		ottled brownish orange and dark brown, and very stiff from 4.0m.	-	4					122/59		sample at 4.0m
	Trace fine sand and mode	rate plasticity from 4.3m.		_					203+		
	Becomes hard from 4.5m.	streaked brownish orange, hard, moist, high plasticity.	_								
		hard, moist, moderate plasticity.	4	5-					119/36		
	Becomes yellowish brown Becomes brownish grey, n								158/58		
	Becomes brownish grey, h										
	End of Hand Auger at 6.0r No scala-penetrometer tes		-	6 - - -					116/72		
										•	•

NOTES Shear vane 1558	LOGGED S Farquhar	DATE EXCAVATED 28-05-20	14
Correction factor = 1.449 Contamination samples taken at 0.0m, 1.0m, 2.0m Bulk samples at 1.5m, 3.0m, 4.0m	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	CLIENT Watercare Services Limited	Јов No. 1-C0935.46	HA219

		LOG OF AUG	ER	НО	LE				HOLE NO. HABH	201
	OPUS	PROJECT NH2 LOCATION See site plan, SH16, Hobsonville		CO-OF	D. 7 47947	E 5927231 N	<i>R.L.</i> 4.37 n <i>DATUM</i> MSL	n	SHEET	of 1
							SOIL TES	rs		
GEOLOGY/UNIT		DESCRIPTION	R.L. (m)	GRAPHIC LOG	MOISTURE CONDITION	SCALA PENETR Blows per 10	OMETER	SHEAR STRENGTH kPa	OTHER TESTS	SAMPLES
		fine sand, dark brown, firm, moist, some organics (fresh wood and rootlets). e sand, grey, moist, firm, high plasticity, trace rootlets and organics.	/							
		nd and trace fine gravel, grey mottled light brown, firm, moist, moderate plasticity,	4	-				84/23		
Fill	Silty CLAY; with trace fine	e sand and pumice fragments, brownish orange, very stiff, moist, moderate plasticity. to medium angular gravel, brownish orange, very stiff, moist, moderate plasticity. RAVEL; loose, poorly graded.						128/53 UTP		
	Becomes very stiff at 2.0r		-2	- - - - - - - - - -				175/88 166/100		
	End of Hand Auger at 2.5 No scala-penetrometer te	m. Too hard to auger. Multiple attempts. st undertaken due to underground services uncertainty.		-				100/100		

NOTES	LOGGED	DATE EXCAVATED)14
Shear vane 1559	J Burton	28-05-20	
Correction factor = 1.563	CHECKED BY:	EXCAVATOR	
Guideline for the field classification of soil and rock for engineering purposes: NZ Geotechnical Society (2005) Determination of penetration resistance of a soil, NZS 4402 : 1988, Test 6.5.2 Shear strength using a hand held shear vane: NZ Geotechnical Society (8/2001)	<i>CLIENT</i> Watercare Services Limited	<i>Јов No.</i> 1-C0935.46	HABH201

APPENDIX G SOIL CONTAMINATION ASSESSMENT

Project: North Harbour No. 2 Watermain - GREENHITHE SECTION ONLY

Soil Test Results (i.e. sediment test results reported seperately)

			Sample De	etails and Anal	ytical Results			Adopted Accept	ance Criteria	Other (Criteria
Sample Location	BH201	BH201	BH201	BH202	BH202	BH204	BH204	SGV (5)		TP15	3 (8)
	BH201-	BH201-	BH201-			BH204-					
Field Sample Ref	0.1m	1.0m	1.0m (10)		BH202-1.0m	0.1m	BH204-1.0m		ALW Plan PA	non volcanic	volcanic
Lab Sample Ref.	1289075.4	1289075.5	1289075.7	1283722.1	1283722.2	1289075.1	1289075.2		Limits (6)		
Date sampled (5)	9/06/2014		9/06/2014	28/05/2014	28/05/2014	5/06/2014	5/06/2014	Comm/Ind			
Sample depth	0.1	1.0	1.0	0.1	1.0	0.1	1.0	Land Use	Schedule 10		
Material Type	soil	soil	soil	soil	soil	soil	soil				
Heavy Metals (1)	-										
Arsenic	3	3	3	<2	<2	3	3	70	100	12	12
Cadmium	0.11	<0.10	0.11	<0.10	<0.10	<0.10	<0.10	1300	7.5	0.65	0.65
Chromium	7	14	9	6	7	17	14	6300	400	55	125
Copper	10	15	15	24	7	15	10	>10,000	325	45	90
Lead	14.2	8.3	16.1	7.2	16.5	40	7	3300	250	65	65
Mercury	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	4200	0.75	0.45	0.45
Nickel	6	9	11	5	4	17	8	1500 (7)	105	35	320
Zinc	31	17	33	71	16	25	16	23,000 (7)	400	180	1160
2	51	17	33	,1	10	23	10	23,000 (7)	400	100	1100
Total Petroleum Hyd	lrocarbons										
C7 - C9	< 9	< 9	< 9	< 8	< 10	< 9	< 9	-	710-2700(12)	-	-
C10 - C14	< 20	< 20	< 20	< 20	< 20	< 20	< 20	-	560-1500(12)	-	-
C15 - C36	< 40	< 40	< 40	< 40	< 40	< 40	< 40	-	>20,000(12)	-	-
Polycyclic Aromatic	Hydrocarbons	S									
Acenaphthene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Acenaphthylene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Anthracene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Benzo[a]anthrac	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Benzo[a]pyrene											
(BAP)	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	35	2.15	-	-
Benzo[b]fluorant +											
Benzo[j]fluorant	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Benzo[g,h,i]peryl	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Benzo[k]fluorant	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Chrysene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Dibenzo[a,h]anth	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Fluoranthene	0.03	< 0.03	<0.03	< 0.03	< 0.04	0.03	< 0.03	-	-	-	-
Fluorene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Indeno(1,2,3-											
c,d)pyrene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Naphthalene	< 0.14	< 0.15	< 0.14	< 0.14	< 0.16	< 0.14	< 0.14	-	69(12)	-	-
Phenanthrene	< 0.03	< 0.03	< 0.03	< 0.03	< 0.04	< 0.03	< 0.03	-	-	-	-
Pyrene	0.04	< 0.03	0.04	< 0.03	< 0.04	0.04	< 0.03	-	1.3-1600(12)	-	-
			an a chi -				 				
Note: other pai	ameters s	Such as Or	ganochio		ides contir	luea on ti	ie next pa	ge			
		<u> </u>						<u> </u>	<u> </u>	I I	

Organochlorine Pesti	cides										
Aldrin	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
alpha-BHC	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
beta-BHC	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
delta-BHC	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
gamma-BHC											
(Lindane)	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	14,000(13)	-	-
cis-Chlordane	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
trans-Chlordane	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Total Chlordane [(cis+trans)*100/42]	< 0.04	-	< 0.04	< 0.04	< 0.04	< 0.04	-	-	-	-	-
2,4'-DDD	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
4,4'-DDD	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
2,4'-DDE	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
4,4'-DDE	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
2,4'-DDT	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	1000	12 -= 0 7(11)		
4,4'-DDT	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	1000	12 or 0.7(11)	-	-
Dieldrin	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	160	190(13)	-	-
Endosulfan I	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endosulfan II	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endosulfan sulphate	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endrin	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endrin aldehyde	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Endrin ketone	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Heptachlor	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Heptachlor epoxide	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Hexachlorobenzene	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-
Methoxychlor	< 0.010	-	< 0.010	< 0.010	< 0.010	< 0.010	-	-	-	-	-

Notes:

1) All heavy metals total recoverable.

2) All test results in mg/kg dry weight.

3) National Environmental Standard- Soil Contaminant Standard or Soil Guideline Value for Commercial/Industrial Land Use, see also note 5 below

4) Sample depth in metres below ground level

5) MfE, 2011, Tables 54 & 55, Methodology for Deriving Standards for Contaminants in Soil to Protect Human Health, for commercial/industrial, outdoor worker and maintenance

6) ARP:ALW (Operative in Part, 21 October 2010). It may be inferred from Note 3 of Schedule 10 that where the heavy metal limit for human health is not shown then the limit is equal or higher than the discharge limit.
7) United States Environmental Protection Agency (USEPA), Human Health Medium – Regional Screening Levels (RSL, May 2013) – International risk – based SGVs for residential land use, non-cancer endpoint, all pathways.
8) Auckland Regional Council- Technical Publication TP153- for non-volcanic and volcanic soils- used as cleanfill values, i.e. if the site sediment is disposed off-site to a licensed cleanfill site located in a non-volcanic soil

8) Auckland Regional Council- Technical Publication TP153- for non-volcanic and volcanic soils- used as cleanfill values, i.e. if the site sediment is disposed off-site to a licensed cleanfill site located in type area the non-volcanic TP153 values apply, note, maximum values stated, e.g. for arsenic the range is 0.4-12 mg/kg.

9) **BOLD** values: exceed the T153- non volcanic soils concentrations

10) Duplicate sample

11) The criteria 12 mg/kg applies to land that is not developed. The criteria 0.7 mg/kg applies to land that is being redeveloped (redevelopment does not include cultivation and the formation and maintenance of tracks) during the redevelopment phase only. Once redevelopment has been completed, the higher criteria applies.

MfE, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) Module 4 – Tier 1 Soil Screening Criteria Residential land use, all pathways, for silty clay soil with surface (<1m) depth of contamination (Table 4.10) and for the protection of groundwater quality for potable use (Table 4.20) with surface contamination (<1 m) and depth to groundwater as 4 m.
 MfE, Identifying, Investigating and Managing Risks Associated with Former Sheep-dipSites, November 2006 – SGVs for human health for commercial/industrial (unpaved) land use- (Table 4).

APPENDIX H SEDIMENT CONTAMINATION ASSESSMENT

Project: North Harbour No. 2 Watermain - GREENHITHE SECTION ONLY

Sediment Test Results (i.e. soil test results reported seperately)

Jeument		<u> </u>					mple Details and	Analytical Result	ts						Adopted Acceptance Criteria		Othe	r Criteria	
Sample Location	HA206	HA208	HA209	HA210a	HA210a	HA211	HA212a	HAS213	HA214a	HA215	HA217	Tab 1	Tab 2	Tab 3		TP15		i.	ed. Quality (7)
					114210- 0 5				114214-0.0										
Field Sample Ref	HA206-0.0m	HA208-0.0m	HA209-0.0m	HA210a-0.0m	HA210a-0.5m	HA211-0.0m	HA212a-0.0m	HAS213-0.0m	HA214a-0.0m	HA215-0.0m	HA217-0.0m		Tab2, 0-0.2m		ARP:ALW PA	non volcanic	volcanic	ISQG-low	ISQG-high
Lab Sample Ref.	1289075.23	1297663.1	1297663.5	1293375.13	1293375.14	1289075.17	1289075.23	1293375.5	1293375.20	1293375.16	1293375.11	1355272.1	1355272.2	1355272.3	Limits (5)				
Date sampled (4)	12/06/2014	1/07/2014	26/06/2014	24/06/2014	24/06/2014	11/09/2014	13/06/2014	13/06/2014	25/06/2014	25/06/2014	24/06/2014	21/11/2014	21/11/2014	21/11/2014	Schedule 10				
Sample depth	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0-0.2	0.0-0.2	0.0-0.2	Schedule 10				
Soil Type	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment	sediment					
Heavy Metals (1)																			
Arsenic	7.3	8	8	8	<2	15.8	18	11	23	16	19	35	30	17.6	100	12	12	20	70
Cadmium	0.089	<0.10	<0.10	<0.10	<0.10	0.031	<0.10	<0.10	<0.10	<0.10	<0.10	0.04	0.046	0.039	7.5	0.65	0.65	1.5	10
Chromium	14.5	25	28	18	8	11.4	22	16	21	17	20	15.1	12.1	14.1	400	55	125	80	370
Copper	19.6	26	27	19	7	11.7	18	17	19	17	19	12.2	10.2	11	325	45	90	65	270
Lead	22	31	34	24	4.6	15.9	29	27	32	29	30	24	25	18.7	250	65	65	50	220
Mercury	0.117	<0.10	<u>0.20</u>	0.11	<0.10	0.081	0.1	0.1	0.13	0.11	0.11	0.093	0.103	0.095	0.75	0.45	0.45	0.15	1
Nickel	8.7	10	10	7	2	4.9	7	7	8	8	7	6.6	6.5	6.6	105	35	320	21	52
Zinc	97	117	125	91	14	58	95	98	119	101	106	89	91	78	400	180	1160	200	410
										I									
Total Petroleum Hyd																			
C7 - C9	< 40	< 30	< 30	<18	< 10	< 13	< 13	< 14	< 14	< 13	< 16	< 12	< 11	< 11	710-2700(10)	-	-	-	-
C10 - C14	< 70	< 50	< 50	< 40	< 20	< 30	< 30	< 30	< 30	< 30	< 40	< 30	< 30	< 30	560-1500(10)	-	-	-	-
C15 - C36	< 140	<100	<90	< 80	< 40	< 50	< 50	< 60	< 60	< 50	< 70	< 50	< 50	< 50	>20,000(10)	-	-	-	-
Polycyclic Aromatic	Hydrocarbons																		
Acenaphthene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	0.017	0.003	0.008	_			0.016	0.5
Acenaphthylene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	0.007	0.003	0.008	-	-	-	0.016	0.64
	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.06	< 0.05	< 0.06	0.039	0.003	0.005		-	-	0.044	1.1
Anthracene	< 0.11	< 0.08	< 0.08	< 0.00	< 0.04	< 0.05	< 0.05	< 0.05	0.00	< 0.05	< 0.06	0.059	0.007	0.015	-	-	-	0.085	1.1
Benzo[a]anthrac	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.13	< 0.05	< 0.06	0.121	0.025	0.062	-	-	-	0.261	1.6
Benzo[a]pyrene						0.07	0.07							0.070					
(BAP)	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.19	0.04	< 0.06	0.147	0.032	0.078	2.15	-	-	0.43	1.6
BaP (equiv)									0.27			0.21							
Benzo[b]fluorant +																			
Benzo[j]fluorant	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.21	0.05	< 0.06	0.169	0.04	0.091	-	-	-		
Benzo[g,h,i]peryl	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.15	0.05	< 0.06	0.093	0.024	0.052	-	-	-		
Benzo[k]fluorant	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.1	< 0.05	< 0.06	0.064	0.015	0.035	-	-	-		
Chrysene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.19	< 0.05	< 0.06	0.123	0.027	0.065	-	-	-	0.384	2.8
Dibenzo[a,h]anth	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	0.018	0.005	0.01	-	-	-	0.063	0.26
Fluoranthene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	0.05	0.43	0.09	< 0.06	0.34	0.064	0.168	-	-	-	0.6	5.1
Fluorene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	< 0.05	< 0.05	< 0.06	0.015	0.003	0.007	-	-	-	0.019	0.54
Indeno(1,2,3-																			
c,d)pyrene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	0.08	< 0.05	< 0.06	0.093	0.022	0.051	-	-	-		
Naphthalene	<0.6	< 0.4	< 0.4	<0.3	< 0.16	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	< 0.012	< 0.011	< 0.011	69(10)	-	-	0.16	2.1
Phenanthrene	< 0.11	< 0.08	< 0.08	< 0.06	< 0.04	< 0.05	< 0.05	< 0.05	<u>0.33</u>	0.06	< 0.06	<u>0.25</u>	0.042	0.095	-	-	-	0.24	1.5

Pyrene	< 0.11	< 0.08	< 0.08	0.07	< 0.04	< 0.05	< 0.05	0.06	0.5	0.12	0.07	0.3	0.059	0.152	1.3-1600(10)	-	-	0.665	2.6
Note: other par	rameters su	ich as Orga	nochlorine	Pesticides, T	ributyl Tin a	nd Total Or	ganic Carbo	n continued	on the next	page									
							Ī												
Organochlorine Pest	icides																		
Aldrin	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
alpha-BHC	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
beta-BHC	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
delta-BHC	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
gamma-BHC																		0.00032	0.001
(Lindane)	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	14,000(11)	-	-	0.00032	0.001
cis-Chlordane	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	
trans-Chlordane	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.0005	0.006
Total Chlordane [(cis+trans)*100/42																		0.0005	0.000
]	< 0.04	< 0.04	< 0.04	< 0.04	-	-	< 0.04	-	< 0.04	-	-	< 0.0020	< 0.0020	< 0.0020	-	-	-		1
2,4'-DDD	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-		
4,4'-DDD	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.002	0.02
2,4'-DDE	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-		
4,4'-DDE	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.0022	0.027
2,4'-DDT	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	42 0 7(42)			0.001.0	0.016
4,4'-DDT	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	12 or 0.7(12)	-	-	0.0016	0.046
Dieldrin	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	190(11)	-	-	0.00002	0.008
Endosulfan I	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Endosulfan II	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Endosulfan																			
sulphate	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Endrin	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-		
Endrin aldehyde	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	0.00002	0.008
Endrin ketone	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-		
Heptachlor	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	
Heptachlor epoxide	< 0.010	< 0.010	< 0.010	< 0.010	_	-	< 0.010	-	< 0.010			< 0.0010	< 0.0010	< 0.0010	-	_	_	_	_
	. 0.010		. 0.010																
Hexachlorobenzene	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Methoxychlor	< 0.010	< 0.010	< 0.010	< 0.010	-	-	< 0.010	-	< 0.010	-	-	< 0.0010	< 0.0010	< 0.0010	-	-	-	-	-
Tributyl Tin																			
Dibutyltin	<0.005	<0.005	<0.005	<0.005	-	-	<0.005	-	<0.005	-	-	<0.005	-	-	-	-	-	-	-
Monobutyltin	<0.007	<0.007	<0.007	<0.007	-	-	<0.007	-	<0.007	-	-	<0.007	-	-	-	-	-	-	-
Tributyltin	<0.004	<0.004	<0.004	<0.004	-	-	<0.004	-	<0.004	-	-	<0.004	-	-	-	-	-	0.005	0.07
Triphenyltin	<0.003	<0.003	<0.003	<0.003	-	-	<0.003	-	<0.003	-	-	<0.003	-	-	-	-	-	-	-
Total Organic Carbo	0.99	4.2	-	2.2	-	4.0	1.56	1.26	1.54	1.31	1.41	0.94	0.84	0.87	-	-	-	-	-

Notes:

1) All heavy metals total recoverable.

2) All test results in mg/kg dry weight.

3) All TPH, PaH, OCP and TBT test results less that the detection limit of the laboratory analytical equipment

4) Sample depth in metres below ground level

5) ALW Plan (Operative in Part, 21 October 2010). It may be inferred from Note 3 of Schedule 10 that where the heavy metal limit for human health is not shown then the limit is equal or higher than the discharge limit. 6) Auckland Regional Council- Technical Publication TP153- for non-volcanic and volcanic soils- used as cleanfill values, i.e. if the site sediment is disposed off-site to a licensed cleanfill site located in a non-volcanic soil type area the non-volcanic TP153 values apply, note, maximum values stated, e.g. for arsenic the range is 0.4-12 mg/kg.

7) Austarlian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZECC) Guidelines, October 2000, Sediment Quality Guidelines, Table 3.5.1- Interim Sediment Quality Guideline (ISQG) Low (trigger value) and ISQG high

8) BOLD values: exceed the T153- non volcanic soils concentrations

9) <u>Underline</u> value: exceeds the ISQG-low value.

MfE, Guidelines for Assessing and Managing Petroleum Hydrocarbon Contaminated Sites in New Zealand (Revised 2011) Module 4 – Tier 1 Soil Screening Criteria Residential land use, all pathways, for silty clay soil with surface (<1m) depth of contamination (Table 4.10) and for the protection of groundwater quality for potable use (Table 4.20) with surface contamination (<1 m) and depth to groundwater as 4 m.
 MfE, Identifying, Investigating and Managing Risks Associated with Former Sheep-dipSites, November 2006 – SGVs for human health for commercial/industrial (unpaved) land use- (Table 4).
 The criteria 12 mg/kg applies to land that is not developed. The criteria 0.7 mg/kg applies to land that is being redeveloped (redevelopment does not include cultivation and the formation and maintenance of tracks) during the redevelopment phase only. Once redevelopment has been completed, the higher criteria applies.

APPENDIX I UPPER CONFIDENCE LIMIT- HEAVY METALS

	А В С Д	E	F	G H I J K	L
1		UCL Statis	tics for Unc	ensored Full Data Sets	
2					
3	User Selected Options				
4		2014 9:30:46 a.m.			
5	From File WorkSt	heet.xls			
6	Full Precision OFF				
7	Confidence Coefficient 95%				
8	Number of Bootstrap Operations 2000				
9					
10	Arsenic				
11					
12			General	Statistics	
13	Total Number	r of Observations	14	Number of Distinct Observations	12
14 15				Number of Missing Observations	0
16		Minimum	1	Mean	15.55
17		Maximum	35	Median	15.9
18		SD	9.35	Std. Error of Mean	2.499
19	Coeffi	cient of Variation	0.601	Skewness	0.64
20					
21			Normal C	GOF Test	
22	Shapiro V	Vilk Test Statistic	0.946	Shapiro Wilk GOF Test	
23	5% Shapiro W	/ilk Critical Value	0.874	Data appear Normal at 5% Significance Level	
24	Lillief	ors Test Statistic	0.147	Lilliefors GOF Test	
25	5% Lillief	ors Critical Value	0.237	Data appear Normal at 5% Significance Level	
26		Data appea	ar Normal at	5% Significance Level	
27					
28			suming Norr	nal Distribution	
29	95% Normal UC	-	10.00	95% UCLs (Adjusted for Skewness)	00.10
30	95%	Student's-t UCL	19.98	95% Adjusted-CLT UCL (Chen-1995)	20.12
31				95% Modified-t UCL (Johnson-1978)	20.05
32			Gamma (GOF Test	
33		A-D Test Statistic	0.418	Anderson-Darling Gamma GOF Test	
34		A-D Critical Value	0.745	Detected data appear Gamma Distributed at 5% Significance	
35		K-S Test Statistic	0.171	Kolmogrov-Smirnoff Gamma GOF Test	20101
36		K-S Critical Value			
37 38		-5 Chucal value	0.231		Level
	Dete			Detected data appear Gamma Distributed at 5% Significance	e Level
	Dete			Detected data appear Gamma Distributed at 5% Significance	e Level
39	Dete		Gamma Dis	Detected data appear Gamma Distributed at 5% Significance	e Level
39 40	Dete		Gamma Dis	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level	ELevel
39 40 41		ected data appear	Gamma Dis Gamma	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics	
39 40 41 42		ected data appear	Gamma Dis Gamma 2.172	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE)	1.754
39 40 41 42 43		k hat (MLE)	Gamma Dis Gamma 2 2.172 7.159	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE)	1.754 8.865
39 40 41 42	MLE Mear	k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE)	Gamma Dis Gamma 2.172 7.159 60.81	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05)	1.754 8.865 49.12
39 40 41 42 43 44	MLE Mear	k hat (MLE) Theta hat (MLE) nu hat (MLE)	Gamma Dis Gamma 2.172 7.159 60.81	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected)	1.754 8.865 49.12 11.74
39 40 41 42 43 44 45	MLE Mear	k hat (MLE) Theta hat (MLE) nu hat (MLE) n (bias corrected)	Gamma Dis Gamma 2 2.172 7.159 60.81 15.55 0.0312	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	1.754 8.865 49.12 11.74 34.03
39 40 41 42 43 44 45 46	MLE Mean Adjusted Leve	k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) h (bias corrected) el of Significance	Gamma Dis Gamma 2 2.172 7.159 60.81 15.55 0.0312	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value mma Distribution	1.754 8.865 49.12 11.74 34.03 32.37
39 40 41 42 43 44 45 46 47	MLE Mear	k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) h (bias corrected) el of Significance	Gamma Dis Gamma 2 2.172 7.159 60.81 15.55 0.0312	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value	1.754 8.865 49.12 11.74 34.03
39 40 41 42 43 44 45 46 47 48	MLE Mean Adjusted Leve	k hat (MLE) Theta hat (MLE) nu hat (MLE) nu hat (MLE) h (bias corrected) el of Significance	Gamma Dis Gamma 2 2.172 7.159 60.81 15.55 0.0312 suming Gam 22.45	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value ma Distribution 95% Adjusted Gamma UCL (use when n<50)	1.754 8.865 49.12 11.74 34.03 32.37
39 40 41 42 43 44 45 46 47 48 49	MLE Mean Adjusted Leve 95% Approximate Gamma UCL (us	k hat (MLE) Theta hat (MLE) nu hat (MLE) n (bias corrected) el of Significance Ass se when n>=50))	Gamma Dis Gamma 2 2.172 7.159 60.81 15.55 0.0312 0.0312 suming Gam 22.45 Lognormal	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value 95% Adjusted Gamma UCL (use when n<50) GOF Test	1.754 8.865 49.12 11.74 34.03 32.37
39 40 41 42 43 44 45 46 47 48 49 50 51 52	MLE Mean Adjusted Leve 95% Approximate Gamma UCL (ur Shapiro V	k hat (MLE) Theta hat (MLE) nu hat (MLE) n (bias corrected) el of Significance Ass se when n>=50))	Gamma Dis Gamma 2 2.172 7.159 60.81 15.55 0.0312 0.0312 suming Gam 22.45 Lognormal 0.832	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics K star (bias corrected MLE) Theta star (bias corrected MLE) Nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value mma Distribution 95% Adjusted Gamma UCL (use when n<50) GOF Test Shapiro Wilk Lognormal GOF Test	1.754 8.865 49.12 11.74 34.03 32.37
39 40 41 42 43 44 45 46 47 48 49 50 51	MLE Mean Adjusted Leve 95% Approximate Gamma UCL (us Shapiro V 5% Shapiro V	k hat (MLE) Theta hat (MLE) nu hat (MLE) n (bias corrected) el of Significance Ass se when n>=50))	Gamma Dis Gamma 2 2.172 7.159 60.81 15.55 0.0312 0.0312 suming Gam 22.45 Lognormal	Detected data appear Gamma Distributed at 5% Significance stributed at 5% Significance Level Statistics k star (bias corrected MLE) Theta star (bias corrected MLE) nu star (bias corrected) MLE Sd (bias corrected) Approximate Chi Square Value (0.05) Adjusted Chi Square Value 95% Adjusted Gamma UCL (use when n<50) GOF Test	1.754 8.865 49.12 11.74 34.03 32.37

	A B C D E	F	G H I J K	
55	5% Lilliefors Critical Value	0.237	Data appear Lognormal at 5% Significance Level	
56	Data appear Approx	kimate Logn	ormal at 5% Significance Level	
57				
58		Lognorma	I Statistics	
59	Minimum of Logged Data	0	Mean of logged Data	2.497
60	Maximum of Logged Data	3.555	SD of logged Data	0.878
61				
62	Assu	ming Logno	rmal Distribution	
63	95% H-UCL	33.56	90% Chebyshev (MVUE) UCL	30.2
64	95% Chebyshev (MVUE) UCL	36.08	97.5% Chebyshev (MVUE) UCL	44.24
65	99% Chebyshev (MVUE) UCL	60.27		
66				
67	•		tion Free UCL Statistics	
68	Data appear to follow a D	Discernible I	Distribution at 5% Significance Level	
69				
70	· · · · · · · · · · · · · · · · · · ·	ametric Dist	tribution Free UCLs	
71	95% CLT UCL	19.66	95% Jackknife UCL	19.98
72	95% Standard Bootstrap UCL	19.53	95% Bootstrap-t UCL	20.94
73	95% Hall's Bootstrap UCL	21.07	95% Percentile Bootstrap UCL	19.64
74	95% BCA Bootstrap UCL	19.84		
75	90% Chebyshev(Mean, Sd) UCL	23.05	95% Chebyshev(Mean, Sd) UCL	26.44
76	97.5% Chebyshev(Mean, Sd) UCL	31.16	99% Chebyshev(Mean, Sd) UCL	40.41
77				
78		Suggested	UCL to Use	
79	95% Student's-t UCL	19.98		
13		19.90		
	Note: Suggestions regarding the selection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
80	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest	UCL are prou	mulation studies summarized in Singh, Singh, and laci (2002)	
80 81	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resu and Singh and Singh (2003). Howeve	UCL are pro ults of the sin er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets.	
80 81 82	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resu and Singh and Singh (2003). Howeve	UCL are pro ults of the sin er, simulatio	mulation studies summarized in Singh, Singh, and laci (2002)	
80 81 82 83	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resu and Singh and Singh (2003). Howeve	UCL are pro ults of the sin er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets.	
80 81 82 83 84	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh	UCL are pro ults of the sin er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets.	
80 81 82 83 84 85 86	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resu and Singh and Singh (2003). Howeve	UCL are pro ults of the sin er, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets.	
80 81 82 83 84 85	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh	UCL are pro ults of the sin er, simulatio tt the user m	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician.	
80 81 82 83 84 85 86 87 88	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh	UCL are pro ults of the sin er, simulatio it the user m General	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician.	
80 81 82 83 84 85 86 87 88	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh	UCL are pro ults of the sin er, simulatio tt the user m	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations	6
80 81 82 83 84 85 86 87 88 88 89 90	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resu and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations	UCL are pro- ults of the sin er, simulatio it the user m General 14	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations	0
80 81 82 83 84 85 86 87 88 89 90 91	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum	UCL are pro- ults of the sin er, simulation t the user m General 14 0.031	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean	0 0.0496
80 81 82 83 84 85 86 87 88 89 90 91 92	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 0.0496 0.05
80 81 82 83 84 85 86 87 88 89 90 91 92 93	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum SD	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. hay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 88 90 91 92 92 93 94	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median	0 0.0496 0.05
80 81 82 83 84 85 86 87 88 89	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum SD	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 89 90 91 92 93 93 93	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resu and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation	UCL are provide the single of the user matrix the user matrix the user matrix of the user	Statistics Statistics Number of Distinct Observations Mean Median Std. Error of Mean Stkewness	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 87 88 90 91 92 92 93 94 95 96	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic	UCL are provide the similar, simulation it the user model of the similar of the similar of the user model of the user mo	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Shapiro Wilk GOF Test	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 89 90 91 92 93 92 93 94 95 96 97 98	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874	mulation studies summarized in Singh, Singh, and laci (2002) ns results will not cover all Real World data sets. lay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874 0.417	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Chaptro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 95 95 95 97 98 99 97 98	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874 0.417 0.237	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Calor Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 94 95 96 97 98 99 1000	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874 0.417 0.237	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Skewness GOF Test Chaptro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 90 91 92 93 94 95 95 95 95 95 97 95 97 95 97 95 97 95 97 100 101	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874 0.417 0.237 Normal at 5	mulation studies summarized in Singh, Singh, and laci (2002) ns results will not cover all Real World data sets. aay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level % Significance Level	0 0.0496 0.05 0.0034
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874 0.417 0.237 Normal at 5	mulation studies summarized in Singh, Singh, and laci (2002) ns results will not cover all Real World data sets. lay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Std. Error of Mean Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level % Significance Level	0 0.0496 0.05 0.00341
80 81 82 83 84 85 86 87 88 90 91 92 93 92 93 94 95 95 96 97 98 99 100 101 102 103	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resu and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not Ass 95% Normal UCL	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874 0.417 0.237 Normal at 5 suming Norm	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level % Significance Level % Significance Level % Significance Level 1000	0 0.0496 0.05 0.00341 2.26
80 81 82 83 84 85 86 87 88 88 89 90 91 92 93 92 93 94 95 96 97	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the rest and Singh and Singh (2003). Howeve For additional insigh Cadmium Cadmium Total Number of Observations Minimum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874 0.417 0.237 Normal at 5	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Median Std. Error of Mean Std. Error of Mean Skewness SOF Test Shapiro Wilk GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level % Significance Level % Significance Level % Significance Level 95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	0 0.0496 0.05 2.26
80 81 82 83 84 85 86 87 88 89 90 91 92 93 92 93 94 95 93 95 93 95 95 95 97 98 99 100 101 102 102	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the resu and Singh and Singh (2003). Howeve For additional insigh Cadmium Total Number of Observations Minimum Maximum Maximum SD Coefficient of Variation SD Coefficient of Variation Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data Not Ass 95% Normal UCL	UCL are pro- ults of the sin er, simulatio it the user m General 14 0.031 0.089 0.0128 0.257 Normal C 0.657 0.874 0.417 0.237 Normal at 5 suming Norm	mulation studies summarized in Singh, Singh, and Iaci (2002) ns results will not cover all Real World data sets. ay want to consult a statistician. Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean Median Std. Error of Mean Std. Error of Mean Skewness Skewness GOF Test Data Not Normal at 5% Significance Level Lilliefors GOF Test Data Not Normal at 5% Significance Level % Significance Level % Significance Level % Significance Level 1000	0 0.0496 0.05 0.00341 2.26

A	B C D E	F Gamma (G H I J K	L
109	A-D Test Statistic	1.859	Anderson-Darling Gamma GOF Test	
110	5% A-D Critical Value	0.734	Data Not Gamma Distributed at 5% Significance Lev	el
111	K-S Test Statistic	0.386	Kolmogrov-Smirnoff Gamma GOF Test	51
112	5% K-S Critical Value	0.228	Data Not Gamma Distributed at 5% Significance Lev	<u></u>
113			ad at 5% Significance Level	
114				
115		Gamma	Statistics	
116	k hat (MLE)	19.83	k star (bias corrected MLE)	15.62
117	Theta hat (MLE)	0.0025	Theta star (bias corrected MLE)	0.00318
118	nu hat (MLE)	555.1	nu star (bias corrected)	437.5
119	MLE Mean (bias corrected)	0.0496	MLE Sd (bias corrected)	0.0126
120		0.0400	Approximate Chi Square Value (0.05)	390
121	Adjusted Level of Significance	0.0312	Adjusted Chi Square Value	384.1
122		0.0012		504.1
123	٥٥٩	uming Gam	ma Distribution	
124	95% Approximate Gamma UCL (use when n>=50))	0.0557	95% Adjusted Gamma UCL (use when n<50)	0.0566
125		0.0007		0.0000
126		Lognormal	GOE Test	
127	Shapiro Wilk Test Statistic	0.75	Shapiro Wilk Lognormal GOF Test	
128	5% Shapiro Wilk Critical Value	0.73	Data Not Lognormal at 5% Significance Level	
129	Lilliefors Test Statistic	0.374	Lilliefors Lognormal GOF Test	
130	5% Lilliefors Critical Value	0.371	Data Not Lognormal at 5% Significance Level	
131			5% Significance Level	
132		ugnormai at		
133		Lognorma	l Statiation	
134	Minimum of Logged Data	-3.474	Mean of logged Data	-3.028
135	Maximum of Logged Data	-3.474	SD of logged Data	0.226
136		-2.415		0.220
137	٨٩٩	mina Loano	rmal Distribution	
138	95% H-UCL	0.0557	90% Chebyshev (MVUE) UCL	0.0586
139	95% Chebyshev (MVUE) UCL	0.0627	97.5% Chebyshev (MVUE) UCL	0.0684
140	99% Chebyshev (MVUE) UCL	0.0795		0.0004
141		0.0735		
142	Nonparama	tric Dietribut	tion Free UCL Statistics	
143			ernible Distribution (0.05)	
144				
145	Nonpar	ametric Diet	ribution Free UCLs	
146	95% CLT UCL	0.0553	95% Jackknife UCL	0.0557
147	95% Standard Bootstrap UCL	0.055	95% Bootstrap-t UCL	0.0584
148	95% Hall's Bootstrap UCL	0.0838	95% Percentile Bootstrap UCL	0.0556
149	95% BCA Bootstrap UCL	0.0838		0.0000
150	90% Chebyshev(Mean, Sd) UCL	0.057	95% Chebyshev(Mean, Sd) UCL	0.0645
151	90% Chebyshev(Mean, Sd) UCL 97.5% Chebyshev(Mean, Sd) UCL	0.0599	95% Chebyshev(Mean, Sd) UCL 99% Chebyshev(Mean, Sd) UCL	0.0645
152	97.5% Chebysnev(Mean, Sd) UCL	0.0709	99% Chebysnev(Mean, Sd) UCL	0.0030
153		Quanacte d		
154		Suggested		0.050
155	95% Student's-t UCL	0.0557	or 95% Modified-t UCL	0.056
156	Note: Oursesting - searching the last (070)			
157			ovided to help the user to select the most appropriate 95% UCL	
158			mulation studies summarized in Singh, Singh, and Iaci (2002)	
159			ns results will not cover all Real World data sets.	
160	For additional insigh	it the user m	ay want to consult a statistician.	
161				
162				

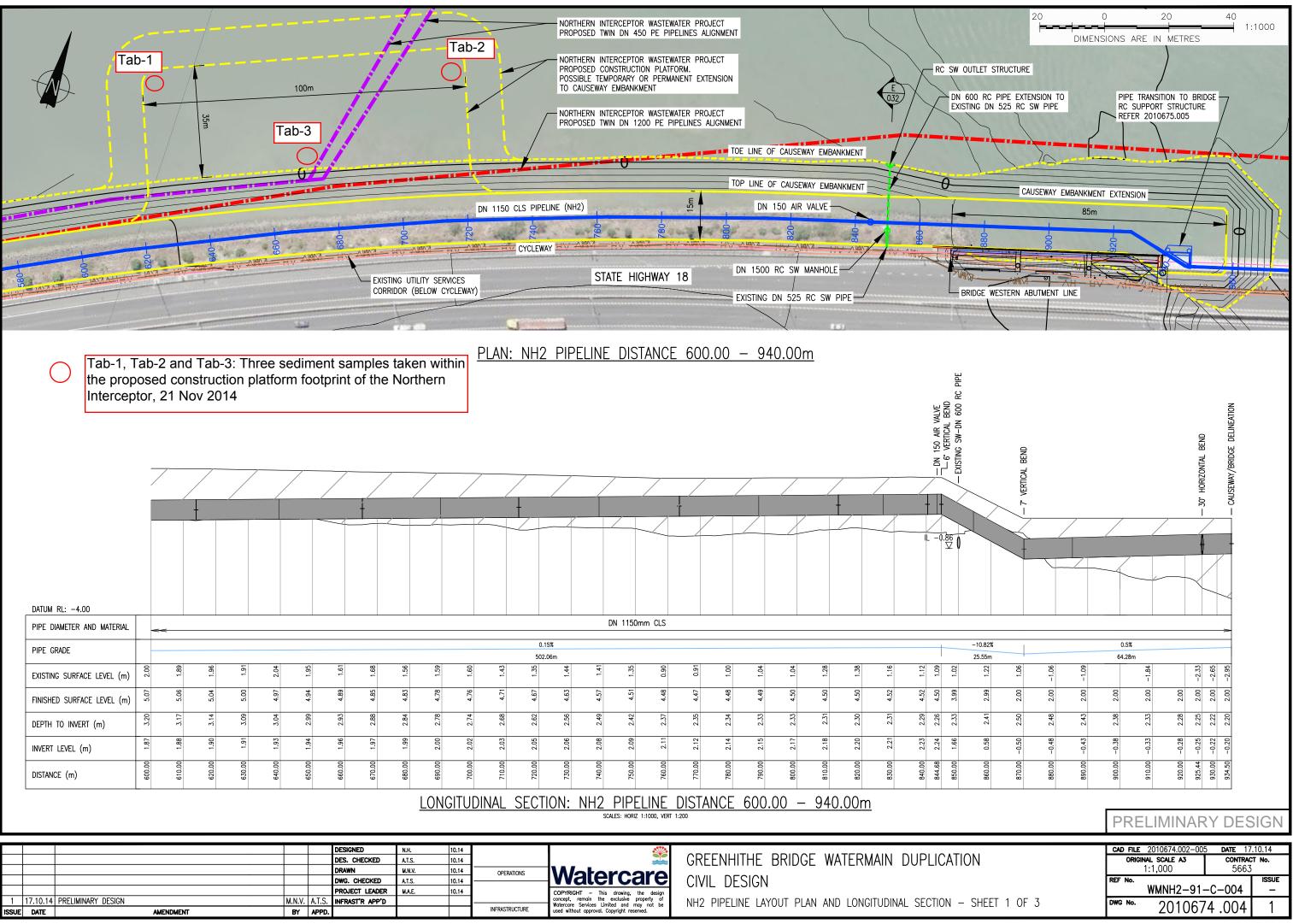
163	A B C D E	F	G H I J K	L
103	Chromium		· · · · ·	
164				
165		General S		
166	Total Number of Observations	14	Number of Distinct Observations	14
167			Number of Missing Observations	0
168		8	Mean	17.3
169		28	Median	16.5
170		5.48	Std. Error of Mean	1.465
171	Coefficient of Variation	0.317	Skewness	0.348
172				
173		Normal G		
174	Shapiro Wilk Test Statistic	0.985	Shapiro Wilk GOF Test	
175		0.874	Data appear Normal at 5% Significance Level	
176		0.0938	Lilliefors GOF Test	
177	5% Lilliefors Critical Value	0.237	Data appear Normal at 5% Significance Level	
178	Data appea	ar Normal at	5% Significance Level	
179				
180			al Distribution	
181	95% Normal UCL	10.00	95% UCLs (Adjusted for Skewness)	10.05
182	95% Student's-t UCL	19.89	95% Adjusted-CLT UCL (Chen-1995)	19.85
183			95% Modified-t UCL (Johnson-1978)	19.92
184		0		
185	A-D Test Statistic	Gamma G 0.109		
186	5% A-D Critical Value		Anderson-Darling Gamma GOF Test	
187	K-S Test Statistic	0.735	Detected data appear Gamma Distributed at 5% Significanc Kolmogrov-Smirnoff Gamma GOF Test	e Levei
188	5% K S Critical Value	0.084	Detected data appear Gamma Distributed at 5% Significance	
189	Detected data appear		tributed at 5% Significance Level	e Level
190				
191		Gamma S	statistics	
192	k bot (MLE)	10.31	k star (bias corrected MLE)	8.147
193	Thete bet (MLE)	1.678	Theta star (bias corrected MLE)	2.124
194	nu hot (MI E)	288.6	nu star (bias corrected)	228.1
195	MLE Maan (high corrected)	17.3	MLE Sd (bias corrected)	6.061
196			Approximate Chi Square Value (0.05)	194.1
197	Adjusted Lovel of Significance	0.0312	Adjusted Chi Square Value	190
198 199				
200	٨٠	uming Gam	na Distribution	
	95% Approximate Gamma UCL (use when n>=50))	20.33	95% Adjusted Gamma UCL (use when n<50)	20.77
201				
201 202		Lognormal	GOF Test	
201 202 203	Shaniya Wills Tast Statistic	Lognormal 0.982	GOF Test Shapiro Wilk Lognormal GOF Test	
201 202 203 204	Shapiro Wilk Test Statistic	-		
201 202 203 204 205	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.982	Shapiro Wilk Lognormal GOF Test	
201 202 203 204 205 206	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value	0.982 0.874	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level	
201 202 203 204 205 206 207	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value	0.982 0.874 0.107 0.237	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test	
201 202 203 204 205 206 207 208	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear	0.982 0.874 0.107 0.237	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level	
201 202 203 204 205 206 207 208 209	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear	0.982 0.874 0.107 0.237	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level t 5% Significance Level	
201 202 203 204 205 206 207 208 209 210	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear	0.982 0.874 0.107 0.237 Lognormal a	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level t 5% Significance Level	2.801
201 202 203 204 205 206 207 208 209 210 211	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear Minimum of Logged Data	0.982 0.874 0.107 0.237 Lognormal a	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level t 5% Significance Level Statistics	2.801
201 202 203 204 205 206 207 208 209 210 211 212	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear Minimum of Logged Data Maximum of Logged Data	0.982 0.874 0.107 0.237 Lognormal a Lognormal 2.079	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level t 5% Significance Level Statistics Mean of logged Data	
201 202 203 204 205 206 207 208 209 210 211 212 213	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear Minimum of Logged Data Maximum of Logged Data	0.982 0.874 0.107 0.237 Lognormal a Lognormal 2.079 3.332	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Lilliefors Lognormal GOF Test Data appear Lognormal at 5% Significance Level t 5% Significance Level Statistics Mean of logged Data	
201 202 203 204 205 206 207 208 209 210 211 212	Shapiro Wilk Test Statistic 5% Shapiro Wilk Critical Value Lilliefors Test Statistic 5% Lilliefors Critical Value Data appear Minimum of Logged Data Maximum of Logged Data	0.982 0.874 0.107 0.237 Lognormal a Lognormal 2.079 3.332	Shapiro Wilk Lognormal GOF Test Data appear Lognormal at 5% Significance Level Data appear Lognormal at 5% Significance Level t 5% Significance Level Statistics Mean of logged Data SD of logged Data	

—	A B C D	E	F	G	Н	<u> </u>	<u> </u>		К	
217	A B C B 99% Chebyshev		г 32.92	G	п	1	J		ĸ	L
	· · ·	,								
218 219		Nonparame	tric Distribu	tion Free UC	L Statistic	s				
	Date appage to follow a Discorpible Distribution at 5% Significance Level									
220 221					•					
221		Nonpar	ametric Dis	tribution Free	UCLs					
	99	5% CLT UCL	19.71				95%	Jackk	nife UCL	19.89
223	95% Standard Bo	ootstrap UCL	19.62				95% I	3ootstr	ap-t UCL	19.91
224 225	95% Hall's B	-	19.8			959	% Percentile		•	19.57
225	95% BCA B	•	19.76						•	
226	90% Chebyshev(Me	-	21.69			95%	Chebyshev(Mean.	Sd) UCL	23.68
227	97.5% Chebyshev(Me		26.45				Chebyshev(,	31.87
228			20110			0070			00)001	
229			Suggested	UCL to Use						
230	95% Sti	Ident's-t UCL	19.89							1
231			10.00							
232	Note: Suggestions regarding the sele	ction of a 95%	LICL are pr	ovided to hel	n the user	to select the	most appro	nriate	95% LICI	
233	These recommendations are based		•					•		
234	and Singh and Singh (•							51 (2002)	
235		Iditional insigh						<u> </u>		
236										
237										
238	Copper									
239	Coppei									
240			Gaporal	Statistics						
241	Total Number of	Obsonyations	14	Statistics		Num	per of Distin	at Oba	onvotiona	11
242		Joservations	14							0
243		Minimarum	7			Num	er of Missir	ig Obs		16.69
244		Minimum Maximum	27						Mean Median	
245		SD					C+			
246	Quefficient	-	5.77				50		r of Mean	
247	Coemicien	t of Variation	0.346						Skewness	0.178
248			Normal							
249	Objective Mille	T t Ot . t . t .		GOF Test		Ohanina				
250	Shapiro Wilk		0.942		<u> </u>		Wilk GOF T			
251	5% Shapiro Wilk (0.874		Data ap	pear Norma	-		e Level	
252		Test Statistic	0.164				rs GOF Tes			
253	5% Lilliefors (0.237			pear Norma	l at 5% Sign	ificanc	e Level	
254		Data appea	ar Normal at	5% Significa	ance Leve					
255										
256		Ass	suming Nori	nal Distributi						
257	95% Normal UCL	·	40.15		95	% UCLs (A	•		•	
258	95% Stu	ident's-t UCL	19.42			•	sted-CLT U	•	,	19.31
259						95% Moc	ified-t UCL	Johns	on-1978)	19.44
260										
261		<u>.</u>		GOF Test						
262		Test Statistic	0.465			erson-Darli	-			
263		Critical Value	0.736	Detected		ear Gamma			-	ice Level
264		Test Statistic	0.21			ogrov-Smir				
265		Critical Value	0.229			ear Gamma		at 5%	Significar	ice Level
266	Detected	d data appear	Gamma Di	stributed at 5	% Signific	ance Level				
267										
268			Gamma	Statistics						
269		k hat (MLE)	8.275				k star (bias	correc	ted MLE)	6.549
270	The	eta hat (MLE)	2.017			The	a star (bias	correc	ted MLE)	2.549
- 1										

1	A B C D E	F	G H I J K I	L			
271	nu hat (MLE)	231.7	nu star (bias corrected)	183.4			
272	MLE Mean (bias corrected)	16.69	MLE Sd (bias corrected)	6.523			
272			Approximate Chi Square Value (0.05)	153.1			
273	Adjusted Level of Significance	0.0312	Adjusted Chi Square Value				
275							
276	٨٥	suming Gam	nma Distribution				
277	95% Approximate Gamma UCL (use when n>=50))	20	95% Adjusted Gamma UCL (use when n<50)	20.49			
278							
279		Lognorma	I GOF Test				
280	Shapira Wilk Tost Statistia	0.93	Shapiro Wilk Lognormal GOF Test				
281	5% Shapiro Wilk Critical Value	0.874	Data appear Lognormal at 5% Significance Level				
282	Lilliefors Test Statistic	0.227	Lilliefors Lognormal GOF Test				
283	5% Lilliefors Critical Value	0.237	Data appear Lognormal at 5% Significance Level				
284	Data appear	Lognormal	at 5% Significance Level				
285							
286		•	I Statistics				
287	Minimum of Logged Data		Mean of logged Data	2.753			
288	Maximum of Logged Data	3.296	SD of logged Data	0.378			
289							
290			ormal Distribution				
291	95% H-UCL	20.7	90% Chebyshev (MVUE) UCL	21.92			
292	95% Chebyshev (MVUE) UCL	24.26	97.5% Chebyshev (MVUE) UCL	27.51			
293	99% Chebyshev (MVUE) UCL	33.88					
294							
295			tion Free UCL Statistics				
296	Data appear to follow a	Discernible	Distribution at 5% Significance Level				
297	Norma	no estato Dia					
298		19.23	tribution Free UCLs 95% Jackknife UCL	19.42			
299	05% Standard Postatran UCI	19.23	95% Bootstrap-t UCL	19.42			
300	95% Hall's Bootstrap UCL	19.13	95% Percentile Bootstrap UCL	19.47			
301	0E% BCA Boststrop UC	19.02		13.14			
302	00% Chabyahay/Maan Ed) UC	21.32	95% Chebyshev(Mean, Sd) UCL	23.41			
303	07 EV Chabyshay/Maan Ed) U.C.	26.32	99% Chebyshev(Mean, Sd) UCL	32.04			
304		20.02		02.04			
305		Suggested	UCL to Use				
306	0E9/ Student's tUC	19.42					
307							
200							
308 309	Noto: Suggestions regarding the selection of a 95%	6 UCL are pr	ovided to help the user to select the most appropriate 95% UCL.				
309	Note: Suggestions regarding the selection of a 95%		ovided to help the user to select the most appropriate 95% UCL. mulation studies summarized in Singh, Singh, and Iaci (2002)				
309 310	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res	ults of the si					
309 310 311	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev	sults of the si ver, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002)				
309 310 311 312	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig	sults of the si ver, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.				
309 310 311 312 313	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig	sults of the si ver, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.				
309 310 311 312 313 314	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig	sults of the si ver, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.				
309 310 311 312 313 313 314 315	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig	sults of the si ver, simulatio	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.				
309 310 311 312 313 313 314 315 316	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig	sults of the si ver, simulatic ht the user m	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets.				
309 310 311 312 313 313 314 315	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig Lead	sults of the si ver, simulatic ht the user m	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. nay want to consult a statistician.	12			
309 310 311 312 313 314 315 316 317	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig	ults of the si ver, simulatic ht the user m General	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. hay want to consult a statistician.	<u>12</u> 0			
309 310 311 312 313 314 315 316 317 318	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig Lead Total Number of Observations	ults of the si ver, simulatic ht the user m General	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. nay want to consult a statistician. Statistics Number of Distinct Observations				
309 310 311 312 313 314 315 316 317 318 319	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig Lead Total Number of Observations	General	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. nay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations	0 24.73 26			
309 310 311 312 313 314 315 316 317 318 319 320	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig Lead Total Number of Observations Minimum Maximum	General	mulation studies summarized in Singh, Singh, and Iaci (2002) ons results will not cover all Real World data sets. nay want to consult a statistician. Statistics Number of Distinct Observations Number of Missing Observations Mean	0 24.73 26 2.064			
309 310 311 312 313 314 315 316 317 318 319 320 321	Note: Suggestions regarding the selection of a 95% These recommendations are based upon the res and Singh and Singh (2003). Howev For additional insig Lead Lead Total Number of Observations Minimum Maximum SD	General	Statistics Statistics Number of Distinct Observations Number of Missing Observations Mean	0 24.73 26			

325 326 327 328 329 330	Shapiro Wilk Test Statistic	Normal	GOF Test				
327 328 329	Shapiro Wilk Test Statistic	0.89	Shapiro Wilk GOF Test				
328 329							
329	5% Shapiro Wilk Critical Value	0.874	Data appear Normal at 5% Significance Level				
	Lilliefors Test Statistic 0.177 Lilliefors GOF Test						
330	5% Lilliefors Critical Value	0.237	Data appear Normal at 5% Significance Level				
	Data appe	ar Normal at	5% Significance Level				
331	A -						
332	95% Normal UCL	suming Norr	nal Distribution				
333	95% Normal UCL 95% Student's-t UCL	28.38	95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995)	27.28			
334	95% Student S-t UCL	20.30	95% Modified-t UCL (Johnson-1978)	27.20			
335			32% Modified-r OCE (Johnson-1978)	20.20			
336		Commo	GOF Test				
337	A-D Test Statistic	1.177	Anderson-Darling Gamma GOF Test				
338	5% A-D Test Statistic	0.737	Data Not Gamma Distributed at 5% Significance Level				
339	K-S Test Statistic	0.737	Kolmogrov-Smirnoff Gamma GOF Test	1			
340	5% K-S Critical Value	0.239	Data Not Gamma Distributed at 5% Significance Level	1			
341			ad at 5% Significance Level	1			
342							
343		Gamma	Statistics				
344	k hat (MLE)	6.161	k star (bias corrected MLE)	4.889			
345	Theta hat (MLE)	4.014	Theta star (bias corrected MLE)	5.058			
346	nu hat (MLE)	172.5		136.9			
347	MLE Mean (bias corrected)	24.73	MLE Sd (bias corrected)	11.18			
348		24.75		110.8			
349	Adjusted Level of Significance	0.0312		107.7			
350	Adjusted Level of Olgrinicance	0.0512		107.7			
351	۵۵۵	uming Gam	ma Distribution				
352	95% Approximate Gamma UCL (use when n>=50))	30.54	95% Adjusted Gamma UCL (use when n<50)	31.42			
303				02			
354		Lognorma	GOF Test				
355	Shapiro Wilk Test Statistic	0.676	Shapiro Wilk Lognormal GOF Test				
356	5% Shapiro Wilk Critical Value	0.874	Data Not Lognormal at 5% Significance Level				
357	Lilliefors Test Statistic	0.259	Lilliefors Lognormal GOF Test				
358	5% Lilliefors Critical Value	0.237	Data Not Lognormal at 5% Significance Level				
359			5% Significance Level				
360 361		•					
362		Lognorma	I Statistics				
363	Minimum of Logged Data	1.526	Mean of logged Data	3.125			
364	Maximum of Logged Data	3.526	SD of logged Data	0.506			
365							
366	Assu	iming Logno	ormal Distribution				
367	95% H-UCL	34.33	90% Chebyshev (MVUE) UCL	36.3			
368	95% Chebyshev (MVUE) UCL	41.15	97.5% Chebyshev (MVUE) UCL	47.87			
	99% Chebyshev (MVUE) UCL	61.08					
369							
369 370	Nonparame	tric Distribu	tion Free UCL Statistics				
370	Data appear to follow a	Discernible I	Distribution at 5% Significance Level				
370 371							
370 371 372							
370 371 372 373		ametric Dis	tribution Free UCLs				
370 371 372 373 374		ametric Dis 28.12	tribution Free UCLs 95% Jackknife UCL	28.38			
370 371 372 373 374 375	Nonpar			28.38 27.77			
370 371 372 373 374	Nonpar 95% CLT UCL	28.12	95% Jackknife UCL				

A B C D	E	F	G H I J K	
379 90% Chebyshev(M		30.92	95% Chebyshev(Mean, Sd) UCL	33.73
380 97.5% Chebyshev(M	ean, Sd) UCL	37.62	99% Chebyshev(Mean, Sd) UCL	45.27
381				
382		Suggested	UCL to Use	
	udent's-t UCL	28.38		
384				
	ection of a 95%	UCL are pro	ovided to help the user to select the most appropriate 95% UCL.	
	d upon the resu	ults of the si	mulation studies summarized in Singh, Singh, and Iaci (2002)	
	(2003). Howeve	er, simulatio	ns results will not cover all Real World data sets.	
	dditional insigh	t the user m	ay want to consult a statistician.	
389				
	ed data, confid	ence limits	(e.g., Chen, Johnson, Lognormal, and Gamma) may not be	
	Johnson's me	thods provi	de adjustments for positvely skewed data sets.	
392				
393				
394 Mercury				
395				
396		General	Statistics	
397 Total Number of	Observations	14	Number of Distinct Observations	10
398			Number of Missing Observations	0
399	Minimum	0.05	Mean	0.104
400	Maximum	0.2	Median	0.102
	SD	0.0359	Std. Error of Mean	0.0096
401 Coefficier	nt of Variation	0.347	Skewness	1.165
402 Coefficien				
403		Normal C	GOF Test	
404 ADD Shapiro Wilk	Test Statistic	0.858	Shapiro Wilk GOF Test	
400 E% Shapira Wilk		0.874	Data Not Normal at 5% Significance Level	
400 ····	Test Statistic	0.214	Lilliefors GOF Test	
407 Eliferors	Critical Value	0.237	Data appear Normal at 5% Significance Level	
408		oximate No	rmal at 5% Significance Level	
409			v	
410	Ass	sumina Norr	nal Distribution	
411 95% Normal UCL			95% UCLs (Adjusted for Skewness)	
412	udent's-t UCL	0.12	95% Adjusted-CLT UCL (Chen-1995)	0.122
413		-	95% Modified-t UCL (Johnson-1978)	0.121
414				
415		Gamma	GOF Test	
416 A-D	Test Statistic	0.762	Anderson-Darling Gamma GOF Test	
417 E% A D	Critical Value	0.735	Data Not Gamma Distributed at 5% Significance Leve	əl
418	Test Statistic	0.203	Kolmogrov-Smirnoff Gamma GOF Test	-
419 E% K C	Critical Value	0.229	Detected data appear Gamma Distributed at 5% Significance	e Level
420 Detected a			Distribution at 5% Significance Level	
421				
422		Gamma	Statistics	
423	k hat (MLE)	9.202	k star (bias corrected MLE)	7.277
424	eta hat (MLE)	0.0112	Theta star (bias corrected MLE)	0.0142
425	nu hat (MLE)	257.6	nu star (bias corrected MEE)	203.8
426 MLE Mean (b		0.104	MLE Sd (bias corrected)	0.0384
427		0.104	Approximate Chi Square Value (0.05)	171.7
428 Adjusted Level o	f Significance	0.0312	Approximate Chi Square Value (0.05)	167.8
429	- orgrinicarice	0.0012		107.0
430	٨٥٥		ma Distribution	
431 95% Approximate Gamma UCL (use v		0.123	95% Adjusted Gamma UCL (use when n<50)	0.126
432 95% Approximate Gamma UCL (use	wiieii ii~-50))	0.123	35 /0 Aujusteu Gamma UCL (use when M<50)	0.120


A	BCDE	F	G H I J K	
433				
434		Lognormal	GOF Test	
435	Shapiro Wilk Test Statistic	0.882	Shapiro Wilk Lognormal GOF Test	
436	5% Shapiro Wilk Critical Value	0.874	Data appear Lognormal at 5% Significance Level	
437	Lilliefors Test Statistic	0.227	Lilliefors Lognormal GOF Test	
438	5% Lilliefors Critical Value	0.237	Data appear Lognormal at 5% Significance Level	
439	Data appear	Lognormal	at 5% Significance Level	
440				
441		Lognorma		
442	Minimum of Logged Data	-2.996		2.324
443	Maximum of Logged Data	-1.609	SD of logged Data	0.352
444	A	ming Loops	mal Distribution	
445			rmal Distribution	0 100
446	95% H-UCL	0.126		0.133
447	95% Chebyshev (MVUE) UCL	0.147	97.5% Chebyshev (MVUE) UCL	0.165
448	99% Chebyshev (MVUE) UCL	0.202		
449	Namagene	trie Dietrikus	ion Free UCL Statistics	
450				
451		Jiscemible I	Distribution at 5% Significance Level	
452	Nonnor	omotrio Dioi	ribution Free UCLs	
453	95% CLT UCL	0.119	·	0.12
454	95% Standard Bootstrap UCL	0.119		0.12
455	95% Standard Bootstrap UCL 95% Hall's Bootstrap UCL	0.119		0.124
456	95% BCA Bootstrap UCL	0.14		0.12
457	95% BCA Boolstrap UCL 90% Chebyshev(Mean, Sd) UCL	0.123	95% Chebyshev(Mean, Sd) UCL 0	0.145
458	97.5% Chebyshev(Mean, Sd) UCL	0.132		0.145
459	97.5% Chebysnev(Mean, Sd) UCL	0.103		0.199
460		Suggested		
461	95% Student's-t UCL	0.12		
462		0.12		
463	Note: Suggestions regarding the selection of a 95%	UCL are pro	prided to help the user to select the most appropriate 95% UCL.	
464		-	nulation studies summarized in Singh, Singh, and Iaci (2002)	
465			ns results will not cover all Real World data sets.	
466			ay want to consult a statistician.	
467				
468 469				
409 470 Nickel				
470				
472		General	Statistics	
473	Total Number of Observations	14	Number of Distinct Observations 8	8
474			Number of Missing Observations 0	0
475	Minimum	2	Mean 7	7.093
476	Maximum	10	Median 7	7
470	SD	2.014	Std. Error of Mean C	0.538
478	Coefficient of Variation	0.284	Skewness -0).97
479				
480		Normal C	OF Test	
481	Shapiro Wilk Test Statistic	0.892	Shapiro Wilk GOF Test	
482	5% Shapiro Wilk Critical Value	0.874	Data appear Normal at 5% Significance Level	
483	Lilliefors Test Statistic	0.241	Lilliefors GOF Test	
	5% Lilliefors Critical Value	0.237	Data Not Normal at 5% Significance Level	
484			-	
484 485	Data appear Appr	oximate No	mal at 5% Significance Level	

	A B C D E	F F	G H I J K A	L
487	95% Normal UCL		95% UCLs (Adjusted for Skewness)	
488	95% Normal UCL 95% Student's-t UCL	8.046	95% Adjusted-CLT UCL (Chen-1995)	7.829
489	35 % Student S-t UCL	0.040	95% Modified-t UCL (Johnson-1978)	8.023
490			35 % Moullieu-LOCE (Johnson-1976)	0.023
491		Gamma G		
492	A-D Test Statistic	1.077	Anderson-Darling Gamma GOF Test	
493	5% A-D Critical Value	0.735	Data Not Gamma Distributed at 5% Significance Leve	1
494	K-S Test Statistic	0.735	Kolmogrov-Smirnoff Gamma GOF Test	
495	5% K-S Critical Value	0.299	Data Not Gamma Distributed at 5% Significance Leve	1
496			at 5% Significance Level	
497				
498		Gamma S	tatiatica.	
499		9.048		7.157
500	k hat (MLE)		k star (bias corrected MLE)	
501	Theta hat (MLE)	0.784	Theta star (bias corrected MLE)	0.991
502	nu hat (MLE)	253.3		200.4
503	MLE Mean (bias corrected)	7.093	MLE Sd (bias corrected)	2.651
504		0.0010		168.6
505	Adjusted Level of Significance	0.0312	Adjusted Chi Square Value	164.8
506	• • •			
507		-	a Distribution	
508	95% Approximate Gamma UCL (use when n>=50))	8.428	95% Adjusted Gamma UCL (use when n<50)	8.626
509		1		
510				
511	Shapiro Wilk Test Statistic	0.727	Shapiro Wilk Lognormal GOF Test	
512	5% Shapiro Wilk Critical Value	0.874	Data Not Lognormal at 5% Significance Level	
513	Lilliefors Test Statistic	0.326	Lilliefors Lognormal GOF Test	
514	5% Lilliefors Critical Value	0.237	Data Not Lognormal at 5% Significance Level	
515	Data Not L	ognormal at 5	% Significance Level	
516				
517				1 000
518	Minimum of Logged Data	0.693	Mean of logged Data	1.903
519	Maximum of Logged Data	2.303	SD of logged Data	0.394
520				
521			nal Distribution	0 500
522	95% H-UCL	8.997	90% Chebyshev (MVUE) UCL	9.522
523	95% Chebyshev (MVUE) UCL	10.57	97.5% Chebyshev (MVUE) UCL	12.03
524	99% Chebyshev (MVUE) UCL	14.89		
525				
526			on Free UCL Statistics	
527	Data appear to follow a [iscernible Di	stribution at 5% Significance Level	
528				
529	-		bution Free UCLs	0.01-
530	95% CLT UCL	7.978	95% Jackknife UCL	8.046
531	95% Standard Bootstrap UCL	7.951	95% Bootstrap-t UCL	7.946
532	95% Hall's Bootstrap UCL	7.894	95% Percentile Bootstrap UCL	7.893
533	95% BCA Bootstrap UCL	7.829		
534	90% Chebyshev(Mean, Sd) UCL	8.708	95% Chebyshev(Mean, Sd) UCL	9.44
535	97.5% Chebyshev(Mean, Sd) UCL	10.45	99% Chebyshev(Mean, Sd) UCL	12.45
536		_		
537		Suggested U	CL to Use	
538	95% Student's-t UCL	8.046		
500				
539			rided to help the user to select the most appropriate 95% UCL.	

	A B C D E	F	G H I J K						
541		-	mulation studies summarized in Singh, Singh, and Iaci (2002)						
542	and Singh and Singh (2003). However, simulations results will not cover all Real World data sets.								
543	For additional insight the user may want to consult a statistician.								
544									
545	Note: For highly negatively-skewed data, confid	lence limits	(e.g., Chen, Johnson, Lognormal, and Gamma) may not be						
546	reliable. Chen's and Johnson's me	thods provi	de adjustments for positvely skewed data sets.						
547									
548									
	ïnc								
550									
551		General	Statistics						
552	Total Number of Observations	14	Number of Distinct Observations	13					
553			Number of Missing Observations	0					
554	Minimum	14	Mean	91.36					
555	Maximum	125	Median	96					
556	SD	28.05	Std. Error of Mean	7.498					
557	Coefficient of Variation	0.307	Skewness	-1.715					
558									
559		Normal (GOF Test						
560	Shapiro Wilk Test Statistic	0.845	Shapiro Wilk GOF Test						
561	5% Shapiro Wilk Critical Value	0.874	Data Not Normal at 5% Significance Level						
562	Lilliefors Test Statistic	0.252	Lilliefors GOF Test						
	5% Lilliefors Critical Value	0.237	Data Not Normal at 5% Significance Level						
563	Data Not	Normal at 5	% Significance Level						
564									
565	Ass	sumina Nori	nal Distribution						
566	95% Normal UCL	3	95% UCLs (Adjusted for Skewness)						
567	95% Student's-t UCL	104.6	95% Adjusted-CLT UCL (Chen-1995)	100					
568			95% Modified-t UCL (Johnson-1978)	104.1					
569									
570		Gamma	GOF Test						
571	A-D Test Statistic	1.638	Anderson-Darling Gamma GOF Test						
572	5% A-D Critical Value	0.738	Data Not Gamma Distributed at 5% Significance Leve	el					
573	K-S Test Statistic	0.317	Kolmogrov-Smirnoff Gamma GOF Test						
574	5% K-S Critical Value	0.229	Data Not Gamma Distributed at 5% Significance Leve	el					
575			ed at 5% Significance Level						
576									
577		Gamma	Statistics						
578	k hat (MLE)	5.636	k star (bias corrected MLE)	4.476					
579	Theta hat (MLE)	16.21	Theta star (bias corrected MLE)	20.41					
580	nu hat (MLE)	157.8	nu star (bias corrected)	125.3					
581	MLE Mean (bias corrected)	91.36	MLE Sd (bias corrected)	43.18					
582			Approximate Chi Square Value (0.05)	100.5					
583	Adjusted Level of Significance	0.0312	Adjusted Chi Square Value	97.52					
584		0.0012		07.0L					
585	۵۵۵	umina Gar	ma Distribution						
586	95% Approximate Gamma UCL (use when n>=50)	114	95% Adjusted Gamma UCL (use when n<50)	117.4					
587		114	(use when how)	117.4					
588		lognorma	GOF Test						
589	Shapiro Wilk Test Statistic	0.606	Shapiro Wilk Lognormal GOF Test						
590	5% Shapiro Wilk Critical Value	0.874	Data Not Lognormal at 5% Significance Level						
591	5% Snapiro Wilk Childai Value	0.874	Lilliefors Lognormal GOF Test						
592	5% Lilliefors Critical Value	0.333	Data Not Lognormal at 5% Significance Level						
593			5% Significance Level						
594		ognormal al							

	А	В	С	D	E	F	G	Н	I	J	K	L
595												
596						Lognorma	I Statistics					
597	Minimum of Logged Data 2.639 Mean of logged Data										4.423	
598	Maximum of Logged Data 4.828 SD of logged Data									0.548		
599												
600							ormal Distribu	ution				
601					95% H-UCL	133				Chebyshev (I	,	139.2
602				Chebyshev (,	158.9			97.5%	Chebyshev (I	MVUE) UCL	186.2
603			99%	Chebyshev (MVUE) UCL	239.9						
604												
605					•		tion Free UC					
606					Data do not f	ollow a Disc	ernible Distr	ibution (0.05	5)			
607												
608							tribution Free	e UCLs				
609					5% CLT UCL	103.7					ckknife UCL	104.6
610				Standard Bo	•	103.5					tstrap-t UCL	102.4
611				5% Hall's Bo	•	101			95%	Percentile Bo	otstrap UCL	102.2
612				95% BCA Bo		100.8						
613				ebyshev(Me		113.9				nebyshev(Mea		124
614			97.5% Ch	ebyshev(Me	an, Sd) UCL	138.2			99% Cł	nebyshev(Mea	an, Sd) UCL	166
615												
616						Suggested	UCL to Use					
617			95% Ch	ebyshev (Me	an, Sd) UCL	124						
618												
619	Ν		•	•						nost appropria		
620		These reco			•				•	h, Singh, and	laci (2002)	
621			and Singh	• •	,		ons results wi			d data sets.		
622				For ad	ditional insig	ht the user m	nay want to co	onsult a stati	stician.			
623												
624		Note: For		•	-			-	•	nd Gamma) n	nay not be	
625			reliable.	Chen's and .	lohnson's m	ethods provi	de adjustme	nts for posit	vely skewed	l data sets.		
626												

APPENDIX J ADDITIONAL SEDIMENT TESTING- PROPOSED CONSTRUCTION PLATFORM-NORTHERN INTERCEPTOR PROJECT

	CAD FILE 2010	674.002-005	DATE 17	.10.14
	original sc 1:1,00	T No.		
	REF No. WMN	NH2-91-C	-004	ISSUE
T 1 OF 3		010674		1

R J Hill Laboratories Limited 1 Clyde Street Private Bag 3205 Hamilton 3240, New Zealand Web www.hill-labs.co.nz

+64 7 858 2000 Tel +64 7 858 2001 Fax Email mail@hill-labs.co.nz

Page 1 of 3

NALYSIS REPORT

Client:	Jacobs New Zealand Limited
Contact:	W Starke
	C/- Jacobs New Zealand Limited
	PO Box 9806
	Newmarket
	AUCKLAND 1149

Lab No:	1355272	SPv1
Date Registered:	25-Nov-2014	
Date Reported:	09-Dec-2014	
Quote No:	65091	
Order No:		
Client Reference:	AE04521	
Submitted By:	C Sjardin	

Sample Type: Sediment								
	Sample Name:	Tab 1 0-0.2	Tab 2 0-0.2	Tab 3 0-0.2	Tab 1 0-0.2	Tab 2 0-0.2		
				21-Nov-2014 3:05	[<63um Fraction]	[<63um Fraction]		
	Lab Number:	pm 1355272.1	pm 1355272.2	pm 1355272.3	1355272.4	1355272.5		
Individual Tests	Lab Number.	100021211	100021212	1000212.0	1000272.1	1000212.0		
Dry Matter	g/100g as rcvd	60	67	62	_	-		
Extractable Copper*	mg/kg dry wt	-	-	-	21	22		
Extractable Lead*	mg/kg dry wt	_			30	30		
Extractable Zinc*	mg/kg dry wt	_			124	121		
Total Organic Carbon*	g/100g dry wt	0.94	0.84	0.87	-	-		
Heavy metals, trace As,Cd,C		0.34	0.04	0.07	_			
•		25	20	17.0				
Total Recoverable Arsenic	mg/kg dry wt	35	30	17.6	-	-		
Total Recoverable Cadmium	mg/kg dry wt	0.040	0.046	0.039	-	-		
Total Recoverable Chromium	88,	15.1	12.1	14.1	-	-		
Total Recoverable Copper	mg/kg dry wt	12.2	10.2	11.0	-	-		
Total Recoverable Lead	mg/kg dry wt	24	25	18.7	-	-		
Total Recoverable Mercury	mg/kg dry wt	0.093	0.103	0.095	-	-		
Total Recoverable Nickel	mg/kg dry wt	6.6	6.5	6.6	-	-		
Total Recoverable Zinc	mg/kg dry wt	89	91	78	-	-		
Organochlorine Pesticides T		1	1	1	1	i .		
Aldrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
alpha-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
beta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
delta-BHC	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
gamma-BHC (Lindane)	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
cis-Chlordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
trans-Chlordane	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
2,4'-DDD	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
4,4'-DDD	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
2,4'-DDE	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
4,4'-DDE	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
2,4'-DDT	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
4,4'-DDT	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Dieldrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Endosulfan I	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Endosulfan II	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Endosulfan sulphate	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Endrin	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Endrin aldehyde	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Endrin ketone	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Heptachlor	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		
Heptachlor epoxide	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-		

This Laboratory is accredited by International Accreditation New Zealand (IANZ), which represents New Zealand in the International Laboratory Accreditation Cooperation (ILAC). Through the ILAC Mutual Recognition Arrangement (ILAC-MRA) this accreditation is internationally recognised. The tests reported herein have been performed in accordance with the terms of accreditation, with the exception of tests marked *, which

laboratory are not accredited.

Sample Type: Sediment						
Sample Name:		Tab 1 0-0.2	Tab 2 0-0.2	Tab 3 0-0.2	Tab 1 0-0.2	Tab 2 0-0.2
	-			21-Nov-2014 3:05	[<63um Fraction]	[<63um Fraction]
		pm	pm	pm	4055070 4	4055070 5
	Lab Number:	1355272.1	1355272.2	1355272.3	1355272.4	1355272.5
Organochlorine Pesticides Tra		I		r	Ì	
Hexachlorobenzene	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
Methoxychlor	mg/kg dry wt	< 0.0010	< 0.0010	< 0.0010	-	-
Total Chlordane [(cis+trans)* 100/42]	mg/kg dry wt	< 0.002	< 0.002	< 0.002	-	-
Polycyclic Aromatic Hydrocarb	ons Trace in Soil					
Acenaphthene	mg/kg dry wt	0.017	0.003	0.008	-	-
Acenaphthylene	mg/kg dry wt	0.008	0.003	0.005	-	-
Anthracene	mg/kg dry wt	0.039	0.007	0.015	-	-
Benzo[a]anthracene	mg/kg dry wt	0.121	0.025	0.062	-	-
Benzo[a]pyrene (BAP)	mg/kg dry wt	0.147	0.032	0.078	-	-
Benzo[b]fluoranthene + Benzo[fluoranthene	j] mg/kg dry wt	0.169	0.040	0.091	-	-
Benzo[g,h,i]perylene	mg/kg dry wt	0.093	0.024	0.052	-	-
Benzo[k]fluoranthene	mg/kg dry wt	0.064	0.015	0.035	-	-
Chrysene	mg/kg dry wt	0.123	0.027	0.065	-	-
Dibenzo[a,h]anthracene	mg/kg dry wt	0.018	0.005	0.010	-	-
Fluoranthene	mg/kg dry wt	0.34	0.064	0.168	-	-
Fluorene	mg/kg dry wt	0.015	0.003	0.007	-	-
Indeno(1,2,3-c,d)pyrene	mg/kg dry wt	0.093	0.022	0.051	-	-
Naphthalene	mg/kg dry wt	< 0.012	< 0.011	< 0.011	-	-
Phenanthrene	mg/kg dry wt	0.25	0.042	0.095	-	-
Pyrene	mg/kg dry wt	0.30	0.059	0.152	-	-
Tributyl Tin Trace in Soil samp	les by GCMS	1	1	1	1	1
Dibutyltin (as Sn)	mg/kg dry wt	< 0.005	-	-	-	-
Monobutyltin (as Sn)	mg/kg dry wt	< 0.007	-	-	-	-
Tributyltin (as Sn)	mg/kg dry wt	< 0.004	-	-	-	-
Triphenyltin (as Sn)	mg/kg dry wt	< 0.003	-	-	-	-
Total Petroleum Hydrocarbons	000	1		1		
C7 - C9	mg/kg dry wt	< 12	< 11	< 11	_	-
C10 - C14	mg/kg dry wt	< 30	< 30	< 30	_	-
C15 - C36	mg/kg dry wt	< 50	< 50	< 50		-
Total hydrocarbons (C7 - C36)	mg/kg dry wt	< 80	< 80	< 80		-
	ing/itg dry wt		< 00	< 00	_	_

SUMMARY OF METHODS

The following table(s) gives a brief description of the methods used to conduct the analyses for this job. The detection limits given below are those attainable in a relatively clean matrix. Detection limits may be higher for individual samples should insufficient sample be available, or if the matrix requires that dilutions be performed during analysis.

Sample Type: Sediment					
Test	Method Description	Default Detection Limit	Sample No		
Environmental Solids Sample Preparation	Air dried at 35°C and sieved, <2mm fraction. Used for sample preparation. May contain a residual moisture content of 2-5%.	-	1-3		
Heavy metals, trace As,Cd,Cr,Cu,Ni,Pb,Zn,Hg	Dried sample, <2mm fraction. Nitric/Hydrochloric acid digestion, ICP-MS, trace level.	0.010 - 0.4 mg/kg dry wt	1-3		
Organochlorine Pesticides Trace in Soil	Sonication extraction, SPE cleanup, GPC cleanup (if required), dual column GC-ECD analysis. Tested on dried sample	0.0010 - 0.002 mg/kg dry wt	1-3		
Polycyclic Aromatic Hydrocarbons Trace in Soil	Sonication extraction, SPE cleanup, GC-MS SIM analysis US EPA 8270C. Tested on as received sample [KBIs:5784,4273,2695]	0.002 - 0.010 mg/kg dry wt	1-3		
Tributyl Tin Trace in Soil samples by GCMS	Solvent extraction, ethylation, SPE cleanup, GC-MS SIM analysis. Tested on dried sample	0.003 - 0.007 mg/kg dry wt	1		
Total Petroleum Hydrocarbons in Soil	Sonication extraction in DCM, Silica cleanup, GC-FID analysis US EPA 8015B/MfE Petroleum Industry Guidelines. Tested on as received sample [KBIs:5786,2805,10734]	8 - 60 mg/kg dry wt	1-3		
Dry Matter (Env)	Dried at 103°C for 4-22hr (removes 3-5% more water than air dry) , gravimetry. US EPA 3550. (Free water removed before analysis).	0.10 g/100g as rcvd	1-3		

Sample Type: Sediment					
Test	Method Description	Default Detection Limit	Sample No		
ARC 2M HCI Extraction*	<63µm Sieved Fraction, extracted with 2M HCI. Solid:Liquid 1:50 w/v. ARC Tech Publication No. 47, 1994.	-	4-5		
Total Recoverable digestion	Nitric / hydrochloric acid digestion. US EPA 200.2.	-	1-3		
Sieving through 63 um sieve, no gravimetric result*	<63µm Wet Sieved with no gravimetric determination.	-	1-2		
Extractable Copper*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	1.0 mg/kg dry wt	4-5		
Extractable Lead*	2M HCI extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	0.2 mg/kg dry wt	4-5		
Extractable Zinc*	2M HCl extraction (<63µm fraction), ICP-MS. ARC Tech Publication No. 47, 1994.	2 mg/kg dry wt	4-5		
Total Organic Carbon*	Acid pretreatment to remove carbonates if present, neutralisation, Elementar Combustion Analyser.	0.05 g/100g dry wt	1-3		

These samples were collected by yourselves (or your agent) and analysed as received at the laboratory.

Samples are held at the laboratory after reporting for a length of time depending on the preservation used and the stability of the analytes being tested. Once the storage period is completed the samples are discarded unless otherwise advised by the client.

This report must not be reproduced, except in full, without the written consent of the signatory.

Ara Heron BSc (Tech) Client Services Manager - Environmental Division

Address PO Box 9806, Newmarket Address PO Box 9806, Newmarket AUCKLAND 1149 Phone 09 928 5500 Fax 09 928 5500 Client Reference Quote No 65091 Order No Primary Contact W Starke 13741	ANALYSIS REQUEST		
Client Name Jacobs New Zealand Limited 31906 Address PO Box 9806, Newmarket 31906 Address PO Box 9806, Newmarket Job No: AUCKLAND 1149 CHAIN OF CUSTODY RECORD Phone 09 928 5500 Fax 09 928 5501 Client Reference Sent to Quote No 65091 Order No Primary Contact W Starke 13741			
Name Jacobs New Zealand Limited 31906 Address PO Box 9806, Newmarket Job No: AUCKLAND 1149 CHAIN OF CUSTODY RECORD Phone 09 928 5500 Fax 09 928 5501 Client Reference Sent to Quote No 65091 Order No Primary Contact W Starke 13741	.nz		
Address PO Box 9806, Newmarket Address PO Box 9806, Newmarket AUCKLAND 1149 Phone 09 928 5500 Fax 09 928 5501 Client Reference Quote No 65091 Order No Primary Contact W Starke 13741 Office use Job No: Office use Job No:	 		
Phone 09 928 5500 Fax 09 928 5501 Client Reference Sent to Date & Time: 24 11 14 Q: Quote No 65091 Order No Please tick if you require COC to be emailed back Date & Time: 24 11 14 Q: Primary Contact W Starke 13741 Date & Time: 24 11 14 Q:			
Client Reference Sent to Date & Time: Date & Time:			
Client Reference Hill Laboratories Quote No 65091 Order No Primary Contact W Starke 13741	150		
Quote No 65091 Order No Primary Contact W Starke 13741	ista		
Primary Contact W Starke 13741			
Bestellet			
Date & Time.			
Submitted By W Starke 13741 Hill Laboratories			
Charge To Jacobs New Zealand Limited 31906 Signature:			
Results To Mail Primary Contact Mail Submitter			
Fax Results Temp:			
Email Results Walter. Starke@jacobs.com			
Sample & Analysis details checked			
AUUTTUKAL INFURMATION Signature:			
also ennil copy of C.o. C to Csjardin@ tonkin.co.nz Priority Low Normal Migh			
Urgent (ASAP, extra charge applies, please contact lab first)			
NOTE: The estimated turnaround time for the types and number of samples and analyses specified on this quote is by 4:30 pm, 10 working days followin the day of receipt of the samples at the laboratory.			

Quoted Sample Types

Requested Reporting Date:

Sediment (Sed)

No.	Sample Name	Sample Date/Time	Sample Type	Tests Required
1	Tab 1	21/11/14 2:32	- sediunt	Please test as per Quote
2	Tab 2	21/11/14 2:15 pm	- Sediment	
3	Tab 3	21/11/14 3:05pm	sediment	PSOIL container for site
4				Tab 3.
5				
6				
7				
8				
9				
10				